

Network for Computational Nanotechnology (NCN)

US Berkeley, Univ. of Illinois, Norfolk State, Northwestern, Purdue, UTEP

Introduction to RTDs: Relaxation Scattering in the Emitter

Gerhard Klimeck

nanoHUB Resonance Widths / Lifetimes in the Emitter

- Width of E1 varies exponentially with bias! => truly bound state!
- Electron sheet density in the emitter is 10¹⁰-10¹²/cm²
 - => strong electron-electron and electron-phonon scattering

$$\tau = 0.1 ps$$

=> state is broadened

$$\Gamma = \frac{\hbar}{2\tau} = 6.6 meV$$

Relaxation in the Emitter - $\eta = 6.6 \text{meV}$

- NEMO [APL94] introduced the relaxation in the reservoirs $\eta = \hbar/2\tau = 6.6 meV$
- Mimics the broadening through scattering
- Critical item in the understanding of RTD transport

 $\eta = 0$

Bias (V)

Conduction band edge, transmission, and current density

- Realistic doping profiles
 - => triangular quantum wells in the emitter.
 - => confined states in the emitter very long lifetime / very narrow states in the mathematically ideal case
- High electron density in the emitter, Equilibirum conditions!
 - => strong equilibrating scattering
 - => states are broadened
- NEMO introduced an empirical broadening model
 - » Partition the device into reservoirs and NEGF region
 - » Reservoirs are non-Hermitian compute charge only
 - » Central NEGF region sees effects of thermalized states
- For typical high performance InGaAs/InAlAs RTDs: set the relaxation to η=6.6meV
 scattering time of about t=0.1ps.
- The relaxation rate should not be used to match experimental data on a one-time basis.

0.8

0.6

Bias (V)

