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NEGF in a Quasi-1D formulation

o Effective Mass Tight-Binding Hamiltonian in 1D
discretized Schrodinger Eq.

e Quantum Transmitting Boundary Method (QTBM)
Open Boundary Conditions

 Fundamental NEGF Equations
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Partitioning of the simulation domain into three regions
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« Left contact with index L, the central device region with index D and right
contact with index R.

* In central device, one solves the non-equilibrium transport equations.
» Contacts are assumed to be in local equilibrium.
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Build difference effective-mass Schrodinger’s equation

» Recall: 1D effective-mass Schrodinger’s equation - differential equation

o 1 o
Ey =— . +V (X
v 25xm(x)5xl/j (v
o finite-difference approximation > X = JA

*

»assume: effective-mass did notvary > m (x)=m
» Three points approximation for second derivative:

Oy w(x—A)=2p (X)+y (x+A)
OX’ A°

Hyj = =Syt dv; =850 = BY; > difference form

o If m*(x) is allowed to vary... which is real in heterostructure
» Variation will be included in values of s;, d; (continued...)
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Schemes of mesh discretization

e Continuum thinking - Put mesh points at the interfaces.
» Some problems in the interface...(next slide)
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« Atomistic thinking: place meshpoints at positions of atoms:
A-B atoms mesh: real device - Ga-As-Ga-As-Al-As-Al-As.

» Interface is between atoms!
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Mapping effective mass to mesh points

» Simple fashion
» Recall: we use a discrete mesh
» wavefunction vary linearly between g, and y;,,
» M* constant across interval j to j+1
=>»equation set 1

* Problem: heterostructure on a mesh point

» make heterostructure between two adjacent
mesh points

=>»equation set 2
» Considering matching condition on
wavefunction

» P and its first derivative must be continuous in
heterostructure

» derive from 1 and 2, apply matching condition

=>» equation set 3 (final)
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Hamiltonian for a close system

-s,, d,—-E -s ) 0
—S d W, 0

n n

» Diagonalize this tridiagonal H to get eigenstates of a closed system.

* Open system not enough...(continued...)
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Quantum Transmitting Boundary Method (QTBM) in discrete case

« Contact: semi-infinite, potential vary smoothly

* |=1 and j=n =» limits of domain where potential vary
» boundary points: j=0 and j=n+1

: _ g 7t 1-]
J<1...... v =a2 +bz

: n—j j—n
j=n...... v, =a,z, ' +b,z,

» propagating states L = e'kA

—7A
» evanescent states Z7=e"

a7t —— Hy+V(x) s a7
_ O—t - = =@~ 4 =~ 4—O
e

r-asi) HEEN T

* Scattering Matrix: [S]
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Quantum Transmitting Boundary Method (QTBM) in discrete case

* To get z, substitute to difference equation:
» solve for z, z,;:

E=d-s(z+2")
E=d,-s,(z,+2,")

» For the boundary points: = v, =a, +hz
v, =a,+b
Wy =8, +h,

Wn+1 — aan:l + bn Zn
e To obtain QTBM equation

\

» Solve for a,, a,, add to matrix =» 4 W, — LY,
& =" =y, + By,
L, =1
Vo — LW
an — n+}1 n~n _ anvjml +ﬂnl//n
K Z, — 1,

/
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Hamiltonian with QTBM

-s, d,—-E -s, W, 0

=S dn —-E —Sni1 v,

n
/8 n an _Wn+1 _ an

« Add QTBM equation to matrix representation Sch-equ Hamiltonian
» to find left scattering state - a,=1 and a,=0 (for right conversely)
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Derive self-energy

* Apply boundary points to difference equation

Hy, =-sy,+dy, —S,w, = Ey,
e From QTBM getlrelation:

W, =22 +bz

b=y, —a
« Substitute in difference equation:

By, =-5 [a1z1_1 +(W1 - a1) Z1:| +dy, - S,

By, =- 1W1Z1+51(a121_a121_1)+d1§”1_52‘)”2 4 )
 Finally we get: .

y we g X =-S2

Ey, =dy, —S,w)— S121‘//1]"[516‘1 ( Z; = 21_1) 1
[ = *l S=sa(z-2")

self-energy | Source term \_ .

» Source term: excitation of channel by contact, depends on a;.
» Self-energy (not-hermitian): modification of H to incorporate BC.
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General formulation in NEGF

e Schrodinger equation for isolated contact: [El,— H,){®,}={0}
* Modified form:
[El,— Ho+ in|{@g ) ={S} -~ (1)
» Extraction of electrons from contact > [n[{®g}
» Reinjection of electrons from external sources -  {S,}
» Maintain constant electrochemical potential - [i]{@,)={S}
» Impact: meaning of E changed...
» eigenenergy =» independent variable (energy of excitation from external
source) _ . \
« Contact coupled to device: {E/’? ~Hetin -7 {(DR T {SR}
» Scattered waves { x } —t EI-H)U v 0
» Coupling Hamiltonian [ 1] [Ele— He+ inlix} - [ Jw} = {0}
* Substitute (f1) to eliminate SR:E[E/ Hlws - [l =[7}{@q)
)= Ger'{y}
G,=[El,— H,+ in]"*

[7]=0"[/¢]

e Solve for { x }, get: and
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General formulation in NEGF

: : ya— In 1D r=1
» Gy is of size R?, where R could be infinite r=—3

« [T]is of size (d x R) and d is the size of device. (d << R)  ¢.=-2/gsin()
* [ T ] only couples r surface elements of contact to device Go=—" 7

»[T]couldbe (dxr)and > =107 S=7¢, S= q%(%—#)% 2=-§2
» Qg is only a (r?) subset of Gy, ¢g is (r x 1) subset of O
e SuMmMary:

1.Channel with one contact: El,—H,+iIn -1 {CDR + Z} _ {SR}
- El-H)| w 0

1.Equation only for the channel: [E/ H — 2]{,//} {5} S =1G,7 +_ YR
2.Solution: {y} =[G]{ Spwith [Gl=[EI- H-3]"

 NEGF equations: -~ ~
» Channel with two contacts: | [E/-H-%, -2, {y}={5}
» Channel Green’s function: [Gl=[E/-H-%, - 22]‘l =[G"]
» Electron density: [G"]=G2"G =[G]
» [n scattering: M= {SYS =5
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