Frequency Modulated AFM
- Experimental Details -

What is Required?

- High stability
- Measure small frequency shifts accurately
- Large spring constant

stiff cantilever:
\[k \sim 100 - 1000 \text{ N/m} \]

cantilever:
\[k \sim 1 \text{ N/m} \]
New Idea: Tuning Forks

\[f_o = 2^N ; \quad N = \text{integer} \]

\[f_o = 2^{15} = 32,768.0000 \text{ Hz} \]

Cost:
\(~0.25 \text{ USD}\)
Quartz: a piezoelectric material

Thermal stability of quartz compared to Si

Electrode Geometry
Selects Vibrational Mode
Vibration Spectrum

Y. Qin, PhD thesis, Purdue University (2007).
Raltron Model R26 Tuning Fork

![Image of Raltron Model R26 Tuning Fork]

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (mm)</td>
<td>3.20 ± 0.01</td>
</tr>
<tr>
<td>Thickness (mm)</td>
<td>0.40 ± 0.01</td>
</tr>
<tr>
<td>Width (mm)</td>
<td>0.33 ± 0.01</td>
</tr>
<tr>
<td>Density (kg/m³)</td>
<td>2.65 × 10³</td>
</tr>
<tr>
<td>Effective mass (kg)</td>
<td>2.72 × 10⁻⁷</td>
</tr>
<tr>
<td>Spring constant (kN/m)</td>
<td>12.7</td>
</tr>
<tr>
<td>Resonance (kHz)</td>
<td>34.39</td>
</tr>
<tr>
<td>Young’s Modulus(Pa)</td>
<td>7.87 × 10¹⁰</td>
</tr>
</tbody>
</table>

Y. Qin, PhD thesis, Purdue University (2007).
Understanding the Resonance

Equivalent Circuit

Anti-resonance
Eliminating the Parasitic Capacitance

Y. Qin, PhD thesis, Purdue University (2007).
Calibrating the Amplitude of Oscillation

Infrared fiber optic interferometer

Y. Qin, PhD thesis, Purdue University (2007).
Typical calibration
(A_0 vs. applied driving voltage)

Calibrating the Amplitude of Oscillation

Y. Qin, PhD thesis, Purdue University (2007).
Mounting a Tip: Tuning Fork AFM

Quartz Tuning Fork from wrist watch

\[k \approx 1000 \text{ N/m} \]

\[Q \text{ in vacuum } \approx 45,000 \]
\[Q \text{ in air } \approx 9,000 \]

Y. Qin, PhD thesis, Purdue University
Commercially available Q-plus sensor
courtesy, F. Giessibl
Phase-Locked Loops (PLLs) track the frequency of an input "noisy" sinusoidal signal that is known to have a variable frequency.

The PLL consists of three components:
- Phase Detector (PD)
- Loop filter
- Voltage-Controlled Oscillator (VCO)
Principle of Digital Phase-Lock Loops (PLL)

TASK: Instantly track and measure frequency of an input signal \(I(t) \) with high accuracy

Input Signal
\(I(t) \) (unknown \(f \))

Independent Output
\(Y(t) \)

Error
\(error(t) = I(t) - Y(t) \)

- Negative feedback!
- Goal is to make \(\Delta f = f - f' = 0 \)
Tuning Fork AFM

No laser required to measure deflection
Scan while keeping $\omega(d^*)$ and Q constant
FM-AFM Force Spectroscopy

Tip-Sample Force

$F_{ts} (d_{\min}) = 2k_e \int_{d_{\min}}^{\infty} \left\{ \left[1 + \frac{\sqrt{A}}{8\sqrt{\pi}(\xi - d_{\min})} \right] \Omega(\xi) - \frac{A^{3/2}}{\sqrt{2}(\xi - d_{\min})} \frac{d\Omega(\xi)}{d\xi} \right\} d\xi$

where $\Omega(\xi) \equiv \frac{\Delta f(\xi)}{f_o}$, $\xi \Leftrightarrow d^*$
FM-AFM Force Spectroscopy

W tip – HOPG substrate

Y. Qin, PhD thesis, Purdue University (2007).