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Graphene field-effect transistors



The materials impact
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The materials impact
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Graphene is a gapless semiconductor
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Material Bulk 
Mobility

Bandgap Effective 
Mass

cm2/Vs eV m*/mo

GaN 2,0004 3.475 0.25

Si 1,4001,3 1.121,2 0.191,2

Ge 3,9001,3 0.6611,2,3 0.0821,2

GaAs 8,5001,3 1.4241,2,3 0.0671,2,3

InGaAs 12,0006 0.747 0.0418

InAs 40,0001 0.3541,3 0.0231,3

InSb 70,0001,3 0.171,3 0.0141,3

1 – Handbook Series on Semiconductor Parameters, 
Levinshtein et al., 1996.

2 – Advanced Semiconductor Fundamentals, Pierret,  2003.
3 – Compound Semiconductor Bulk Materials and Characterizations, 

Oda, 2007.

4 – Private communication, T. Sands, 2009.
5 – Properties of Advanced Semiconductor Materials, Bougrov et al., 2001.
6 – J.D. Oliver et al., J. Cryst. Growth, 54, 64 (1981).
7 – K.-H. Goetz et al., J Appl. Phys., 54, 4543 (1983).
8 – GaInAsP alloy semiconductors, John Wiley & Sons 1982.
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graphene 100,0009 0 0
9 – cond-mat 0805.1830v1 2008.
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The quantum capacitance
impact:
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Advantages of 1D / 2D



… but there is more …
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… improved electrostatics allows to 
reduce the device length
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Advantages of 1D / 2D

“Nano” allows for improved 
electrostatics …

Graphene and graphene nanoribbons are ultra-thin body 
devices with a tbody≈0.5nm



Advantages of 1D / 2D

Advantages of graphene and 
graphene nanoribbons
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♦ reduced scattering

♦ top-down approach

♦ ultra-thin body

♦ 1:1 band movement

♦ improved scaling



Switching in graphene versus carbon nanotubes

The energy dependence of the 
density of states is the key for 
current modulation in G-FETs
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Source to drain through conduction band:

(1)

Note: In our calculations, we will consider only one kF-point. 

All currents need to be multiplied by 2 for carbon nanotubes.

One-dimensional transport in the QCL limit
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Drain to source through valence band:

Source to drain through valence band:
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One-dimensional transport in the QCL limit



One-dimensional transport in the QCL limit

Contributions from I1 to I4
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One-dimensional transport in the QCL limit

Eg-dependence of output characteristics



One-dimensional transport in the QCL limit

CNFET with Eg=0.1eV
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1D and 2D transport in the QCL limit

CNFET with Eg=0.1eV G-FET with Eg=0eV



One-dimensional transport in the QCL limit
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On the operation of different FETs

Silicon MOSFET (with gap)
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Silicon nanowire FET Carbon nanotube FET 
(with gap)

Graphene FET 
(without gap)
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On the operation of different FETs



The quantum capacitance

Large area graphene devices 
for quantum capacitance 
characterization
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Sample fabrication

AFM height: 0.4nm

1µm

Single layer graphene through „peeling“

IEDM Technical Digest, 509 (2008)



Graphene capacitance measurements

Similar Id-Vgs are obtained for single and multi-layer graphene
IEDM Technical Digest, 509 (2008)



Graphene capacitance measurements

Cq ~ DOS
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However, C-Vgs characteristics are very different
IEDM Technical Digest, 509 (2008)



Graphene capacitance measurements

Including a trap capacitance contribution allows to …



Graphene capacitance measurements

… extract the quantum capacitance Cq

IEDM Technical Digest, 509 (2008)



Graphene capacitance measurements

Scaled graphene devices will operate in the QCL!

Cox (2nm Al2O3)



Graphene mobility

Intrinsic and extrinsic 
contributions in graphene 
devices



Graphene device characteristics

short channel characteristics long channel characteristics

mobility extraction from gm

carrier concentration in gm- region: ns~1012cm-3



2

0

ds m ox

gs ox ds ds r

I g dL
V C V WV

Lµ
ε ε

∆
= =
∆

Graphene device characteristics

Mobility decrease 
is evidence of 
transition into the 
ballistic transport 
regime
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Graphene device characteristics
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Summary

 Graphene devices can operate in the
quantum capacitance regime

 Graphene offers a number of intrinsic
materials related properties that make
it particularly suited for electronic applications

 Contact effects need to be considered in 
graphene even in the absence of a bandgap
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