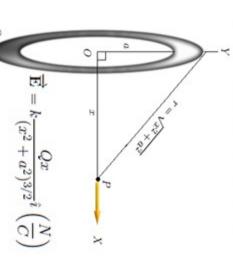
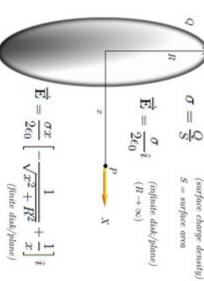
Chapeter 21

Coulomb's Law

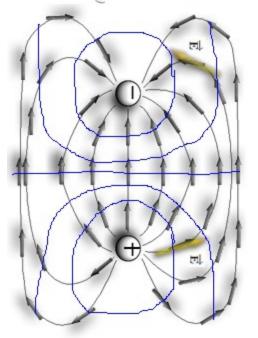
$$F = \frac{1}{4\pi\epsilon_0} \frac{|q_1 q_2|}{r^2} \quad (N)$$

 $k = \frac{1}{4\pi\epsilon_0} \cong 8.988 \times 10^9$

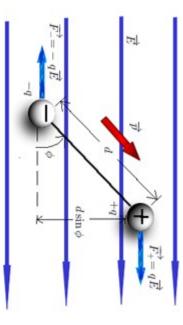

 $\lambda = \frac{Q}{\ell}$


(linear charge density)

Electric Field

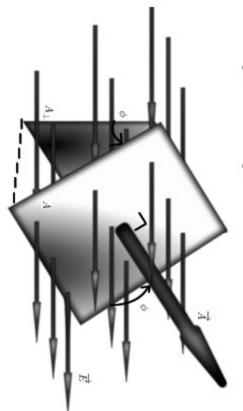

$$\overrightarrow{\mathbf{E}} = \overrightarrow{\overline{\mathbf{F_0}}}_{q_0} = k \frac{q_0}{r^2} \hat{\mathbf{r}} \quad \left(\frac{N}{C}\right)$$

Electric Field Calculation (Common cases)

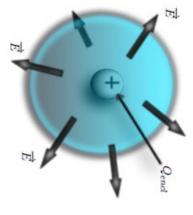


(infinite disk/plane) $(R \to \infty)$

Electric Dipoles


Torque
$$= \overrightarrow{r} = \overrightarrow{p} \times \overrightarrow{E} = pE \sin \phi$$

P. Energy $= U = -\overrightarrow{p} \cdot \overrightarrow{E} = -pE \cos \phi$


Chapeter 22

Electric Flux

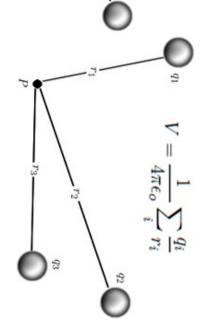
$$\theta_E = \int \vec{E} \cdot d\vec{A} = \int E \cos \phi \, dA$$

$$\theta_E = \oint \overrightarrow{E} \cdot d\overrightarrow{A} = rac{Q_{encl}}{\epsilon_o}$$

Charge	
distribution	

Point in Electric Field

Electric Field Magnitude


Two oppositely charged conducting plates with surface charge densities $+\sigma$ and $-\sigma$	Infinite sheet of charge with uniform charge per unit area σ	Solid insulating sphere with radious R , charge Q distributed uniformly throughout volume Infinite sheet of charge with uniform charge		Infinite conducting cylinder with radious R , charge per unit lenght λ		Infinite wire, charge per unit lenght λ	Charge q on a surface of conducting sphere with radious R		Single point charge q	
Any point in between the plates	Any point	Inside sphere, $r < R$	Outside sphere, $r > R$	Inside cylinder, $r < R$	Outside cylinder, $r > R$	Distance r from the wire	Inside the sphere, $r < R$	Outside the sphere, $r > R$	Distance r from q	
$E = \frac{\sigma}{\epsilon}$	$E = \frac{\sigma}{2\epsilon_o}$	$E = \frac{1}{2\pi\epsilon_o} \frac{Qr}{R^3}$	$E = \frac{1}{4\pi\epsilon_o} \frac{Q}{r^2}$	E = 0	$E = \frac{1}{2\pi\epsilon_o} \frac{\lambda}{r}$	$E = \frac{1}{2\pi\epsilon_o} \frac{\lambda}{r}$	E = 0	$E = \frac{1}{4\pi\epsilon_o} \frac{q}{r^2}$	$E = \frac{1}{4\pi\epsilon_o} \frac{q}{r^2}$	

Chapeter 23

 $U = \frac{q_0}{4\pi\epsilon_o} \sum_i \frac{q_i}{r_i}$

Electric potential

Electric potential of various charge distributions

$$V_a = V_b + \frac{\lambda}{2\pi\epsilon_o} \ln \frac{r_b}{r_a} \qquad \text{(Infinite line of charge)}$$

$$V = \frac{Q/2a}{4\pi\epsilon r} \ln \frac{\sqrt{x^2 + a^2} + a}{\sqrt{x^2 + a^2} - a} \qquad \text{(Finite line of charge)}$$

$$V = \frac{Q}{4\pi\epsilon r} \qquad \text{(Charged ring)}$$

$$V_x = E(d-x) \qquad \text{(Parallel Plates)}$$

$$V = \frac{q}{4\pi\epsilon_o r} \qquad \text{(Outside)} \qquad \text{(Charged conducting sphere)}$$

$$V = \frac{q}{4\pi\epsilon_o R} \text{ (Inside/Constant)}$$

$$V = \frac{q}{4\pi\epsilon_o R} \text{ (Inside/Constant}$$

$$\overrightarrow{E} = -\left(\frac{\partial V}{\partial x}\hat{\imath} + \frac{\partial V}{\partial y}\hat{\jmath} + \frac{\partial V}{\partial z}\hat{k}\right)$$