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• There is still a considerable gap between semi-classical particle
simulation and quantum models in terms of physical details

Semi-classical 
Transport 

(Monte Carlo)
particle

inclusion of: 
- quantum corrections
- quantum sub-band details

strengths:
- advanced scattering models
- band structure readily included
- moderate computational cost

Ballistic 
quantum 
transport

inclusion of: 
- scattering models
- band structure details

strengths:
- quantum coherence
- tunneling and evanescent
  behavior at barriers

wave

Introduction



Motivation for Quantum Corrections

• Full-quantum transport is often impractical
• Goal is to extend the validity of semi-

classical Monte Carlo to ≈10-nm regime
• Quantum corrections can extend the validity

of semi-classical Monte Carlo in a practical
way
– Mixed quantum/classical effects are

treated in a unified fashion
– Little extra computational overhead is

added in both 2D and 3D



The “expensive” MC alternative [1,2]
• Resolve complete transverse subbands
• Describe particle dynamics within subbands
• Implement intra-subband, inter-subband and

possibly 2-D to 3-D scattering if a continuum
of states is used at high energies

• If a continuum of states is used in the
contacts, one needs to treat the dis-
continuity of band edge to subbands at the
channel entrance.

• Applications have been mainly limited to
uniform 2DEG channels.



Role of Quantum Corrections

• Monte Carlo particles represent the motion
of wave packets centroids in the crystal.

• Monte Carlo does not account for inter-
ference effects due to rapidly varying
applied fields or hetero-junctions.

• Quantum corrections can capture non-
coherent interference effects.

• Coherent transport effects are small for pure
silicon devices above 10-nm regime.



Monte Carlo Snapshot of a MOSFETMonte Carlo Snapshot of a MOSFET



Corrections in Monte Carlo

 Quantum effects can be approximated in Monte
Carlo by correcting the classical potential

Tunneling 

      Size
Quantization

U
U + Uc



Snapshot from MOS Capacitor



Effective Potential [3]
• Feynman developed the effective potential

in the 1960s and applied it to quantum
corrections in statistical mechanics

• Particles feel nearby potential due to
quantum fluctuations around classical path
of least action

• Veff is a non-local function of the nearby
potential
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Properties of Effective Potential

• Simple to implement and to calculate
• Not sensitive to noise from Monte Carlo
• Works best for smooth, symmetric potentials
• a can be treated as a fitting parameter

describing the “size” of the particle
• Detailed solution near large heterojunctions

is typically incorrect and cannot be fit



Effective potential for MOS

• Effective size a can be tuned to match sheet
charge density



Effective potential for MOS



Parameter-free effective potential [4]
Recently, a more general form of the effective potential
has been introduced (Ahmed, Ringhofer and Vasileska,
2005) which depends explicitly on the wave vector k and
does not contain fitting parameters:

Here, V(y) is the sum of the barrier discontinuity at the
interface and the solution of Poisson equation.  The
standard effective potential is a particular case.
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Wigner Formulation [5]

• The Wigner method was developed in the 1930s for
quantum correction to statistical mechanics

• Wigner formulation of quantum mechanics formally
separates the quantum and classical contributions to
the equation of motion

Quantum
Contribution

Classical
Boltzmann equation



• We start from the general Wigner function representation of
quantum transport

where

is the density matrix.

• The Wigner function is the quantum equivalent of the
distribution function in the semi-classical Boltzmann
equation.
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Wigner formulation for quantum corrections



• The quantum transport equation of the Wigner function has
the form (parabolic bands, ballistic)

• Direct solution of the Wigner transport equation is still a
considerable numerical challenge.

• We are interested in determining a truncated expansion of
the quantum equation, that resembles the standard
Boltzmann equation, so that the standard Monte Carlo
technique can be applied with minor modifications.
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Wigner formulation for quantum corrections



• The complete Wigner transport equation, inclusive of collision
terms, can be reformulated to resemble Boltzmann equation

• At first order, we truncate considering only α = 1.

Wigner formulation for quantum corrections

( )

( )
( )

r r k

1

2 1

r k

1

1
v

1

4 2 1 ! C

f
f U f

t

f
U f

t

!
!

!
! !

+"
+

=

#
+ $ % & % $%

#

& #
+ % $% =

#+

' (
) *
+ ,

-

rrr

rr

r

h

h

Wigner formulation for quantum
corrections



• The truncated equation has a form resembling Boltzmann equation

where Fqc contains the quantum correction to the forces.

• With the modified forces, the particles move as if under the
influence of a classical potential, but following equivalent quantum
trajectories.

• The quantum correction essentially modifies the potential energy
felt by the particles.

Wigner formulation for quantum corrections
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• The corrected forces can be evaluated by making assumptions on
distribution function and bandstructure.  For

Wigner formulation for quantum corrections
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Wigner formulation for quantum
corrections



• The forces obtained have still some practical problems in regions
like sharp interfaces, where quantum effects are prominent.

• To obtain a smooth potential, we can use approximate relations
obtained by integrating the displaced Maxwellian distribution with
the momentum.

• We obtain these alternative expressions for the second order
derivatives of the potential

Wigner formulation for quantum corrections
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• The “smooth” version of the quantum corrected forces is

• This formulation has explicit momentum dependence and improves
upon previous results in the literature where the momentum terms
were evaluated with the thermal energy

Wigner formulation for quantum corrections
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• Test of the quantum corrections in Monte Carlo:
Single GaAs/AlGaAs/GaAs barrier with a fixed potential (1)

Wigner formulation for quantum corrections

Wigner formulation for quantum
corrections



• Single GaAs/AlGaAs/GaAs barrier with a fixed potential (2)

Wigner formulation for quantum corrections

Wigner formulation for quantum
corrections



• Single GaAs/AlGaAs/GaAs barrier with a fixed potential (3)

Wigner formulation for quantum corrections

Wigner formulation for quantum
corrections



Properties of Wigner Correction

• Requires long run times due to Monte Carlo noise in
∇

2
ln(n) and restricts grid spacing

• Works well in drift-diffusion where noise is not an
issue

• Unlike effective potential, ∇
2
ln(n) is local

• For MOS, a single fitting parameter was found to
adjust the correction at the oxide interface

• Requires no fitting in the silicon region



Wigner-corrected MOS Inversion

Wigner correction is accurate across range of
biases—empirical nox = 1015 cm-3 to fit interface



Wigner-corrected MOS Accumulation

nox = 1015 cm-3



Bohm potential correction [6]
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The eigenenergy plays the role of the effective total
potential, or effective conduction band edge
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Bohm potential correction
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(valid under thermal equilibrium)
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The equation represents a first-order quantum
correction to the semi-classical BTE by taking into
account the effect of carriers only occupying the
quantized ground state.  Usually, where the quantum
correction is needed, density is not too high (Fermi
level is below the first excited state).



Schrödinger-Based Correction [7]

• Treats quantum effects in the direction
perpendicular to transport

• Accurate
• No fitting parameters
• Not sensitive to noise in the Monte Carlo

concentration estimator
• Efficient, additional computation time is

small



Applying Schrödinger Correction

• Schrödinger equation is solved along 1D
slices of the 2-D domain

• Self-consistent Monte Carlo potential is the
input to Schrödinger and quantum density,
nq, is output

• Concentration is linked to the correction
with a Boltzmann dependence
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Consistent with Non-equilibrium Transport

• Schrödinger energy levels/wavefunctions are
filled on a Boltzmann distribution

• Within each slice, the correction forces the
shape of the quantum density onto Monte
Carlo

• No Fermi level is required
• Relative concentration between the slices is

determined naturally by Monte Carlo
transport



Quantum-corrected Simulation Flow

Potential

Energy levels

Quantum density

Quantum correction

Move Particles in
Corrected Potential

!" #=$%$ pV

)( qcpr VV
q

dt

kd
+!= r

h

r

2

*

1

2
p

d d
V E

dz m dz

!
! !

" #
$ + =% &

' (

h

! "#
E

kTE
q

tezEzn /2
),()( $

( ) opqt VzVznkT +!! )()(log



Schrödinger-corrected MOS Inversion



Schrödinger-corrected MOS Accumulation



Schrödinger-corrected Double-gate



Schrödinger vs Other Corrections for MOS

• Typical behavior of different corrections for MOS



Schrödinger vs Other Corrections for MOS



Extending Schrödinger Correction to Devices

• Heating occurs in the direction ⊥ to transport
• Cannot make use of an electron “temperature”

because it is not well-defined for non-equilibrium
• Define a “transverse” temperature Tt to describe

the variation of the concentration with potential in
the ⊥ direction

• Tt is validated if a single temperature at each point
along the transport path accurately describes the
variation



25 nm Well-tempered MOSFET – 2D Monte Carlo simulation

Leff = 25 nm     TOX = 15 Å
VG  = 1.0 V       VD  = 1.0 V

salicide

channel doping

S/D halo

n+ n+

Tox = 1.5 nm

x j
x j

spacer
Tpoly

Lsd
n+

25 nm Well-tempered MOSFET – 2D Monte
Carlo simulation



25 nm Well-tempered MOSFET

Leff = 25 nm     TOX = 15 Å
VG  = 1.0 V       VD  = 1.0 V

electron concentration corrected potential energy

25 nm Well-tempered MOSFET



Validating Transverse Temperature

Tt(z) accurately describes potential→concentration
for highly non-equilibrium transport in 25nm FET



Typical Transverse Temperature

• Transverse temperature for a 25-nm MOSFET
in saturation bias



Effect of Heating in the ⊥ Direction



Properties along transport path



MOS SCALING

New structures are considered to replace the bulk
MOSFET:

•   Silicon-on-insulator (SOI)
•   Double-gate MOSFET
•   Schottky-barrier MOSFET (silicide contacts)
•   FinFET
•   Quantum wire MOSFET

MOS SCALING



Double-Gate MOSFET  -  Volume inversion effect

n+
toxf

toxb
DS

G
Gf

Gb

tSin+ n+

n+

n+ or p+

p–

Rule of thumb: Comparisons with NEGF
simulations (Purdue nanoMOS) indicate
that quantum corrected Monte Carlo is
accurate for layers of thickness in the
range tSi ~ 3nm.

LG = 10 nm

LG = 20 nm

Double-Gate MOSFET  -  Volume inversion
effect



tSi = 4nm, Vds = 0.50V, Vg = 0.50V                 tSi = 4nm, Vds = 0.50V, Vg = 0.35V

Comparison with nanoMOS

tSi = 4nm, Vds = 0.50V, Vg = 0.20V

Comparison with nanoMOS



FinFET
3D Monte Carlo simulation

LG = 20 nm

TSi = 20 nm

W = 10 nm

tox = 1 nm

ND = 1020 cm-3

NA = 1016 cm-3

oxide

Si
Fin

base oxide

gate

W=10 nm

T=20 nm

y

z

FinFET



Potential

Charge density n=10x

       Classical                Quantum corrected

FinFET simulation

[V]

[x]

FinFET simulation



Comparisons with Schrödinger Solver

FinFET simulation

Comparisons with Schrödinger Solver



FinFET simulation

FinFET simulation



FinFET simulation

FinFET simulation



Transverse Temperature improvements [8]

• In a structure lacking a substrate reference
(e.g. double gate MOSFET) the definition of
transverse temperature may be problematic.

• One may replace kBT with

the average value of the stress tensor along
each transverse direction, to account for the
variation of the electron temperature along
the longitudinal direction.

yy y yU v k= h



Conclusions
• Quantum corrections can be used to extend the validity of

Monte Carlo device simulation to the 10-nm regime
• Wigner-based corrections

– accurate;  momentum-dependence is interesting
– somewhat impractical due to noise in Monte Carlo

• Bohm correction
– improves noise with respect to Wigner correction

• Effective potential
– simple and fast
– accurate for small heterojunctions

• Schrödinger-based correction
– accurate and efficient with no fitting parameters
– requires eigenvalue solver but not too expensive in MC
– possibly best choice for size quantization effects
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Questions and Answers


