

Network for Computational Nanotechnology (NCN)

Berkeley, Univ. of Illinois, Norfolk State, Northwestern, Purdue, UTEP

NEMO1D: Incoherent Scattering

Gerhard Klimeck

Basic Operation of a Resonant Tunneling Diode

Conduction band diagrams for different voltages and the resulting current flow NCN

12 different I-V curves: 2 wafers, 3 mesa sizes, 2 bias directions

PVR – Peak-to-Valley-Ratio

1994: Best experiment PVR=80

=> On-Off-Ratio should to be >1,000

1994: What is the valley current physics?

1997: Can overlay experiment and theory. What are the key insights?

Where Does The Valley Current Come From? Scattering?

Scattering?

20 nm GaAs $N_D = 2 \cdot 10^{18} \text{ cm}^{-3}$ 200 nm GaAs $N_D = 2 \cdot 10^{15} \text{ cm}^{-3}$ 18 nm GaAs 5 nm $Al_{0.4}Ga_{0.6}As$ 5 nm $Al_{0.4}Ga_{0.6}As$ 5 nm $Al_{0.4}Ga_{0.6}As$ 18 nm GaAs 200 nm GaAs $N_D = 2 \cdot 10^{15} \text{ cm}^{-3}$ 20 nm GaAs $N_D = 2 \cdot 10^{18} \text{ cm}^{-3}$

Electron-Phonon Interactions Coupled Resonators

Self-consistent Born (infinite sequential scattering) treatment of acoustic phonon-scattering

Single sequential scattering treatment of polar optical phonon scattering NCN

Interface Roughness Scattering

Self-consistent Born (infinite sequential scattering) treatment of IR-scattering

InGaAs

InP

InP

Why is the I-V-Characteristic Asymmetric with Interface Roughness Scattering?

Scattering rate is proportional to the density of states at the scattering interface.

Applied bias 'tilts' the density of states toward the lower potential

Weak Scattering

Strong Scattering

Alloy (Disorder) Scattering

Disorder in the mirrors or the gain medium will spread out the resonator spectrum

Self-consistent Born (infinite sequential scattering) treatment of alloy-scattering

Weak Effects in GaAs/AlGaAs

Non-Linear Media

Changing effective Mass Disperses carriers in 2D

$$\nabla^2 \vec{E} = -\omega^2 \mu \varepsilon \vec{E}$$

$$k^2 = \omega^2 \mu \varepsilon$$

Weak Effect

$$\nabla^2 \Psi = -\frac{2m}{\hbar} (E - U) \Psi$$

$$k^2 = \frac{2m}{\hbar}(E - U)$$

Low Temperature: Polar Optical Phonon and Interface Roughness Scattering

Low Temperature: Polar Optical Phonon and Interface Roughness Scattering

scattering raises valley current by several orders of magnitude

Yet: Scattering is NOT the Answer!

Scattering important:

- Low temperature
- "Physicist devices"

Scattering does not explain

High performance devices

Where Does The Valley Current Come From? Scattering?

At Room Temperature

Scattering?

Where Does The Valley Current Come From? Bandstructure

