Network for Computational Nanotechnology (NCN)

Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP NEM01D: Implementation of NEGF Scattering Theory NCN

Gerhard Klimeck Optical/E\&M Analogies to Quantum Mech

$$
\nabla^{2} \Psi=-\frac{2 m}{\hbar}(E-U) \Psi
$$

$$
k^{2}=\frac{2 m}{\hbar}(E-U)
$$

Physics are similar:

- Propagation as a wave phenomenon:
» Antennas
»Waveguides
- Propagation as a scattering problem:
»Diffraction gratings
» Radar cross-sections
- Green functions as propagators
- Finite difference, finite elements
- Scattering is coherent \& elastic rather than incoherent \& inelastic
- Photons do not interact with themselves:
- Calculate the propagation
- Do not calculate the occupation
- Exception is a laser!
- Electron and Laser Simulation need:

Dynamics \& Kinetics -

States \& Bean-counting

But:

online simulation and more

- Dynamics - States of the System
» Need to solve a form of the Schrodinger Wave Equation. Relatively simple problem.
- Kinetics - Occupation of states - transfer of carriers
» Need to account for many electrons, injection from contacts, scattering etc.
This is the harder part of the problem.
- In general:
»Pauli exclusion principle couples the dynamics and the kinetics! \checkmark Expl:

1) electron scatters into state and remains there (relatively long).
2) higher energetic electrons cannot scatter into the full state, $->$ their scattering rate is reduced
-> the available states are modified.
»We punted on the proper treatment of the coupled kinetics and dynamics and found approximations.

What are the Simulation Targets?

- Dynamics - States of the System - NEGF: GR
» Need to solve a form of the Schrodinger Wave Equation.

$$
\begin{aligned}
& \left(E-H-\sum^{R} \text { bound }^{-}-\sum^{R}{ }_{\text {scatt }}\right) G^{R}=1 \quad G^{R} \quad \text { impulse response } \\
& \sum^{R} \text { bound }=\Gamma^{\text {left }}+\Gamma^{\text {stight }} \quad \sum_{\Sigma R^{R}} \text { bound out-scattering to contacts } \\
& \Sigma_{\text {scatt }}^{\mathrm{R}}=\mathrm{DxG}{ }^{\mathrm{R}}
\end{aligned}
$$ channels

- Kinetics - Occupation of states - transfer of carriers - NEGF: Gく
» Need to account for many electrons, injection from contacts, scattering etc.

- In general:
»Pauli exclusion principle couples the dynamics and the kinetics!
\checkmark Expl:

1) electron scatters into state and remains there (relatively long).
2) higher energetic electrons cannot scatter into the full state,
-> their scattering rate is reduced
-> the available states are modified.
»We punted on the proper treatment of the coupled kinetics and dynamics and found approximations.

$$
G_{1}=\sigma_{1}^{2} \sigma_{1}^{4}
$$

みodsueュ」

Multiple Sequential Scattering

online simulation and more

Calculate the electron density and current using all of the
$G^{<}$

Multiple Sequential Scattering with POP

- Elastic scattering couples all momenta (k)
- Inelastic scattering couples different total energies (E,E+hv,E-hv)
- Polar optical phonons are treated as a single scattering event in NEMO

Dynamics

$$
\left(E-H_{0}-\Sigma_{S C A T T}^{R}-\Sigma_{B O U N D}^{R}\right) G^{R}=1
$$

Kinetics

$$
\left(E-H_{0}-\Sigma_{\text {SCATT }}^{R}-\Sigma_{\text {BOUND }}^{R}\right) G^{\kappa}=\left(\Sigma_{\text {SCATT }}^{<}-\Sigma_{\text {BOUND }}^{<}\right) G^{A}
$$

Infinite number of uncorrelated single scattering events.

Self-Consistent Born Scattering with POP

- Elastic scattering couples all momenta (k)
- Inelastic scattering couples different total energies (E,E+hv,E-hv)
- Polar optical phonons are treated as a single scattering event in NEMO

1. Self consistent calculations of $G_{e l}^{R}$ and $\sum_{e l}^{R}$ at energies E and $E \pm \omega$ and all transverse k.

$$
\begin{array}{r}
\sigma_{e l}^{<0}(E)=D_{e l} \otimes G_{0}^{<}(E) \\
\quad \text { Elastic inscattering. }
\end{array}
$$

$\sigma_{p o p}^{<a b}(E+\omega)=D_{p o p}^{<a b} \otimes G_{0}^{<}(E)$ Inscattering from absorption of polar optical phonons.
$\sigma_{p o p}^{<e m}(E-\omega)=D_{p o p}^{<e m} \otimes G_{0}^{\kappa}(E)$ Inscattering from emission of polar optical phonons.
$G_{e l}^{\kappa}$

- Supriyo Datta has an Excellent web Page on nanoHUB.org: https://nanohub.org/topics/negf
- Tutorials, On-Line seminars, Ph.D. theses, tool examples
- The implementations and equations mentioned here are described fully in:
"Single and multiband modeling of quantum electron transport through layered semiconductor devices",
Roger Lake, Gerhard Klimeck, R. Chris Bowen and Dejan Jovanovic,
J. of Appl. Phys. 81, 7845 (1997).
online simulation and more

PURDUE Gerhard Klimeck

