NEMO1D: Hole Bandstructure in Quantum Wells and Hole Transport in RTDs

Gerhard Klimeck
Electron transport in RTDs: Density of States and Transmission

- **Density of States:**
 Shows the spatial and energetic “location” of possible states

- **Transmission:**
 Shows spikes where the DOS is strong in the central RTD

- **Small effective mass:**
 Large state separation

- **Large effective mass:**
 “heavy” electrons
 - Small state separation
 - Sharp peaks - strong confinement
 - Deep background/peak ratio: 10^{13}
 strong confinement
 weak coupling to outside

Small effective mass: strong confinement, weak coupling to outside.

Large effective mass: small state separation, strong confinement, deep background/peak ratio.
Hole transport in RTDs: Simplified Density of States and Transmission

- Holes
 Are just upside-down????

- Not quite!
 » LH and HH are coupled
 » Highly non-parabolic dispersion
 » Highly anisotropic dispersion

- Very unintuitive transport behavior!
• Transmission coefficient at $k_x=0$
• sp^3s^* represents all bands simultaneously. Can identify LH, HH, and SO features
Dispersion in the Transverse Direction

Electron vs. Hole Subbands

Electron:
- Dispersion: "simple", almost parabolic
- Transmission: simple "replica"

Holes:
- Dispersion: "complicated"
- Transmission: dramatically altered
Where does this dispersion come from?

<table>
<thead>
<tr>
<th>Property</th>
<th>exp.</th>
<th>GaAs sim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_g^Γ</td>
<td>1.4240</td>
<td>1.4240</td>
</tr>
<tr>
<td>Δ_{so}</td>
<td>0.3400</td>
<td>0.3664</td>
</tr>
<tr>
<td>m_Γ^*</td>
<td>0.0670</td>
<td>0.0679</td>
</tr>
<tr>
<td>$m_{lh}[001]$</td>
<td>-0.0871</td>
<td>-0.0708</td>
</tr>
<tr>
<td>$m_{lh}[011]$</td>
<td>-0.0804</td>
<td>-0.0662</td>
</tr>
<tr>
<td>$m_{lh}[111]$</td>
<td>-0.0786</td>
<td>-0.0649</td>
</tr>
<tr>
<td>$m_{hh}[001]$</td>
<td>-0.4030</td>
<td>-0.4105</td>
</tr>
<tr>
<td>$m_{hh}[011]$</td>
<td>-0.6600</td>
<td>-0.6929</td>
</tr>
<tr>
<td>$m_{hh}[111]$</td>
<td>-0.8130</td>
<td>-0.8750</td>
</tr>
<tr>
<td>m_{so}^*</td>
<td>-0.1500</td>
<td>-0.1440</td>
</tr>
</tbody>
</table>
HH and LH dispersions in bulk

LH band non-parabolic

<table>
<thead>
<tr>
<th>Property</th>
<th>exp.</th>
<th>GaAs sim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_g^Γ</td>
<td>1.4240</td>
<td>1.4240</td>
</tr>
<tr>
<td>Δ_{so}</td>
<td>0.3400</td>
<td>0.3664</td>
</tr>
<tr>
<td>m^*_{Γ}</td>
<td>0.0670</td>
<td>0.0679</td>
</tr>
<tr>
<td>$m^*_{lh}[001]$</td>
<td>-0.0871</td>
<td>-0.0708</td>
</tr>
<tr>
<td>$m^*_{lh}[011]$</td>
<td>-0.0804</td>
<td>-0.0662</td>
</tr>
<tr>
<td>$m^*_{lh}[111]$</td>
<td>-0.0786</td>
<td>-0.0649</td>
</tr>
<tr>
<td>$m^*_{hh}[001]$</td>
<td>-0.4030</td>
<td>-0.4105</td>
</tr>
<tr>
<td>$m^*_{hh}[011]$</td>
<td>-0.6600</td>
<td>-0.6929</td>
</tr>
<tr>
<td>$m^*_{hh}[111]$</td>
<td>-0.8130</td>
<td>-0.8750</td>
</tr>
<tr>
<td>m_{so}</td>
<td>-0.1500</td>
<td>-0.1440</td>
</tr>
</tbody>
</table>

LH band strongly anisotropic

=> Electron-like
• Plot on the left:
 » overlay the bulk quantized HH and LH dispersions
• Plot on right:
 » Dashed, same as left
 » Solid, coupled bands in a RTD simulation
Bulk Quantized Dispersions vs. Coupled Bands

(a) Hole Energy (eV) vs. Transmission

(b) E(k) vs. Momentum k

(c) T(E,k=0.039) vs. Transmission

(d) Current Density J(k) (a.u.) vs. Transverse Momentum k

(e) Applied Bias (V) vs. Momentum k

(f) J(V) vs. Current (kA/cm^2)

Gerhard Klimeck
Transport via Transmission Coefficients

\[I \propto \int dk_x \int dk_y \int dET(E, k_x, k_y) \left(f^L(E) - f^R(E) \right) \]

\[\text{Cylindrical Coordinates} \]

\[I \propto \int d\varphi \int kd\varphi \int dET(E, k, \varphi) \left(f^L(E) - f^R(E) \right) \]

\[\text{Throw out angular dependence} \]

\[I \propto 2\pi \int kd\varphi \int dET(E, k) \left(f^L(E) - f^R(E) \right) \]

\[\text{Parabolic transverse subbands} \]

\[I \propto \rho_{2D} \int T(E) \left(f^L(E) - f^R(E) \right) \]
Electron-like Dispersion in second subband

\[I \propto \int kdk \int dET(E,k) \left(f_L(E) - f_R(E) \right) \]

\[I \propto \int kdk J(k) \]

Non-monotonic (electron-like) dispersion can dip back into the Fermi sea.
Electron-like Dispersion injected with holes from emitter

\[I \propto \int kdkdET(E,k)\left(f_L(E) - f_R(E)\right) \]

\[I \propto \int kdkJ(k) \]

Non-monotonic (electron-like) dispersion can dip back into the Fermi sea

\[J(k) \]

\[V=0.113V \]
Electron-like Dispersion results in off-zone center flow

\[I \propto \int kdk \int dET(E,k) \left(f_L(E) - f_R(E) \right) \]

\[I \propto \int kdk J(k) \]

\[J(k) \]

- \(J(k) \) can be sharply peaked away from \(k=0 \)
- \(\Rightarrow \) off-zone center current

- More electrons flow through an angle than straight through
• HH1 is mixture of the bulk HH and LH bands
• $m^*_{HH1} < m^*_{HH}$
• Surprising energy crossings
• HH1 is mixture of the bulk HH and LH bands
• $m^*_{HH1} < m^*_HH$
• Surprising energy crossings

• Current flow peaked at $k>0$
• Background provided by HH2

$J(k)$
Off-zone-center current: Resonance Width Modulation
anti-crossing modulates resonance width
anti-crossing modulates resonance width
anti-crossing modulates resonance width

\[J(k) \]

\(J(k) \) can be sharply peaked away from \(k=0 \)

=> off-zone center current
Off-zone Center Current Flow in Hole RTDs
Must have full band integration!
Quantum Transport in non-parabolic, strained, and coupled bands

Electron:
- Dispersion looks parabolic, but is NOT
- Transmission looks replicated, but is NOT

Holes:
- LH, HH, SO coupled
- Dispersion “complicated”
- Transmission dramatically altered

Resonant Tunneling Diodes Are very similar to Ultra-Thin Bodies!

Tight Binding Handles Coupling Between Bands
Strain, Non-Parabolicity
• Bandstructure – atomistic device resolution
 » Critical for understanding high temperature, high performance devices
 » Effective mass leads to non-predictive and wrong conclusions
 » Tight binding can handle electrons, holes, strain, band-coupling/mixing
 » Ultra-Thin bodies, nanowires, and quantum dots will look similar to RTD
Hole Transport

- Highly non-parabolic behavior in dispersion
- Bands are strongly coupled
- Carriers can travel in various k directions

Bandstructure – atomistic device resolution

- Critical for understanding high temperature, high performance devices
- Effective mass leads to non-predictive and wrong conclusions
- Tight binding can handle electrons, holes, strain, band-coupling/mixing
- Ultra-Thin bodies, nanowires, and quantum dots will look similar to RTD