

Network for Computational Nanotechnology (NCN)

Berkeley, Univ. of Illinois, Norfolk State, Northwestern, Purdue, UTEP

NEMO1D:

Hole Bandstructure in Quantum Wells and Hole Transport in RTDs

Gerhard Klimeck

Electron transport in RTDs: Density of States and Transmission

- Density of States:
 Shows the spatial and energetic "location" of possible states
- Transmission: shows spikes where the DOS is strong in the central RTD
- Small effective mass: large state separation
- Large effective mass: "heavy" electrons
 - » small state separation
 - » Sharp peaks strong confinement weak coupling to outside
 - Deep background/peak ratio: 10¹³
 strong confinement
 weak coupling to outside

Hole transport in RTDs:

Simplified Density of States and Transmission

Holes

tsuj and ejectrons

upside-down????

- Not quite!
 - » LH and HH are coupled
 - » Highly non-parabolic dispersion
 - » Highly anisotropic dispersion
- Very unintuitive transport behavior!

Hole Transport in RTDs sp3s* full band model

- Transmission coefficient at k_x=0
- sp³s* represents all bands simultaneously. Can identify LH, HH, and SO features

Dispersion in the Transverse Direction Electron vs. Hole Subbands

Where does this dispersion come from?

Property	GaAs	
	exp.	sim.
E_g^{Γ}	1.4240	1.4240
Δ_{so}	0.3400	0.3664
m_{Γ}^*	0.0670	0.0679
$m_{lh}^*[001]$	-0.0871	-0.0708
$m_{lh}^*[011]$	-0.0804	-0.0662
$m_{lh}^*[111]$	-0.0786	-0.0649
$m_{hh}^*[001]$	-0.4030	-0.4105
$m_{hh}^*[011]$	-0.6600	-0.6929
$m_{hh}^*[111]$	-0.8130	-0.8750
m_{so}^*	-0.1500	-0.1440

HH and LH dispersions in bulk

LH band non-parabolic

Property	GaAs	
	exp.	sim.
E_g^{Γ}	1.4240	1.4240
Δ_{so}	0.3400	0.3664
m_{Γ}^*	0.0670	0.0679
$m_{lh}^*[001]$	-0.0871	-0.0708
$m_{lh}^*[011]$	-0.0804	-0.0662
$m_{lh}^*[111]$	-0.0786	-0.0649
$m_{hh}^*[001]$	-0.4030	-0.4105
$m_{hh}^*[011]$	-0.6600	-0.6929
$m_{hh}^*[111]$	-0.8130	-0.8750
m_{so}^*	-0.1500	-0.1440

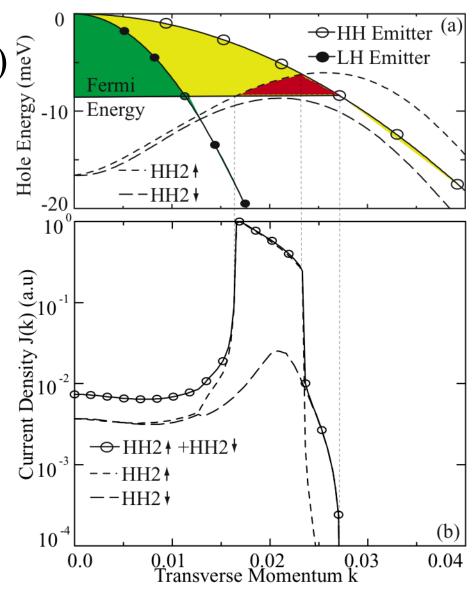
LH band strongly anisotropic => Electron-like

Bulk Quantized Dispersions vs. Coupled Bands

- Plot on the left:
 - » overlay the bulk quantized HH and LH dispersions
- Plot on right:
 - » Dashed, same as left
 - » Solid, coupled bands in a RTD simulation

Bulk Quantized Dispersions vs. Coupled Bands

Electron-like Dispersion injected with with holes from emitter

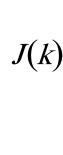


Electron-like Dispersion results in off-zone center flow

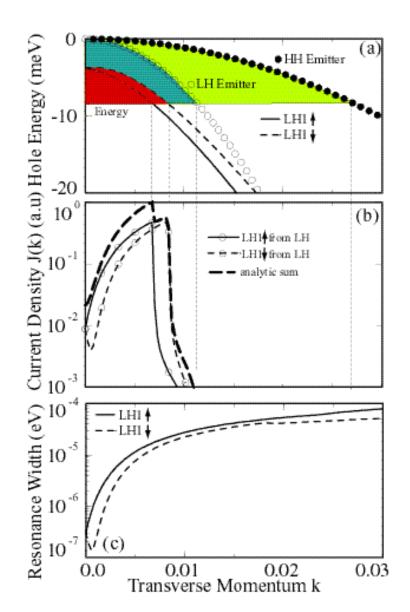
$$I \propto \int k dk \int dE T(E, k) (f_L(E) - f_R(E))$$
 $\lim_{k \to \infty} \int k dk J(k)$ How $I \propto \int k dk J(k)$

- J(k) can be sharply peaked away from k=0
- => off-zone center current
- More electrons flow through an angle than straight through

- HH1 is mixture of the bulk HH and LH bands
- m*_{HH1} < m*_{HH}
- Surprising energy crossings



- HH1 is mixture of the bulk HH and LH bands
- m*_{HH1} < m*_{HH}
- Surprising energy crossings
- Current flow peaked at k>0
- Back ground provided by HH2



J(k) can be sharply peaked away from k=0 => off-zone center current

Off-zone Center Current Flow in Hole RTDs Must have full band integration!

Quantum Transport in non-parabolic, strained, and coupled bands

State-of-the-art RTD Modeling and Simulation Knowledge 1998 / 2000

- T(E,k=0) T(E,k=0.039)
- Bandstructure atomistic device resolution
 - » Critical for understanding high temperature, high performance devices
 - » Effective mass leads to non-predictive and wrong conclusions
 - » Tight binding can handle electrons, holes, strain, bandcoupling/mixing
 - » Ultra-Thin bodies, nanowires, and quantum dots will look similar to RTD

Conclusion Hole Transport

Hole Tranport

- Highly non-parabolic behavior in dispersion
- Bands are strongly coupled
- Carriers can travel in various k directions

Bandstructure – atomistic device resolution

- Critical for understanding high temperature, high performance devices
- Effective mass leads to non-predictive and wrong conclusions
- Tight binding can handle electrons, holes, strain, bandcoupling/mixing
- Ultra-Thin bodies, nanowires, and quantum dots will look similar to RTD

