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ABSTRACT 

Solar energy is becoming one of the primary sources of energy replacing fossil 

fuels due to its abundance. Its versatility, abundance and environmental friendly have 

made it one of the most promising renewable sources of energy. Solar cells convert this 

solar energy into Electrical Energy used to drive various appliances. The effort to 

improve the efficiency of these cells and the reduction of their costs has been a major 

concern for a long time. Modeling of various structures of solar cells provides an insight 

into the physics involved in its operation and better understanding of the ways to improve 

their efficiency. 

In this work a three dimensional Drift Diffusion Model has been developed and 

has been used to simulate Silicon Solar cells. This model involves the self consistent 

solution of the Poisson and Continuity Equations. A pn silicon solar cell has been 

simulated to test the working of the code. Later a p+-p-n+ and n+-p-p+ structure of 

various lengths has been simulated to understand the physics behind the operation of a 

realistic silicon solar cell. Recombination mechanisms which play a crucial role in the 

determination of the cell efficiency such as Radiative Recombination, SHR 

recombination, Auger Recombination have been included in the code.  

Light does not enter through all the regions of the device since the top metal 

contact has some reflectivity and thus prevents the light to enter the device called the 

Shadowing effect. Thus Shadowing effect tends to reduce the efficiency of the solar cell 

as the effective number of electron hole pairs generated within the device has been 

reduced and this is observed during simulation. The surface recombination effect has also 



   

 iv 

been included for the surface of the window through which light enters the device and 

this also tends to reduce the efficiency. 

Finally the efficiency variation with the variation in the length of the device has 

been simulated. Theoretically the efficiency increases initially with the increase in the 

base length since the capture of higher wavelength photons or lower energy photons is 

possible thus increasing the efficiency but with increase after a certain length a decrease 

in the efficiency takes place due to the increase in the ratio of the length of the device to 

the diffusion length. In this work the increase in the efficiency with length has been 

simulated but the length could not be increased a lot to observe the decrease in efficiency 

due to limitation of simulation time. 
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  Chapter 1 
 

 INTRODUCTION 

I. ALTERNATIVE SOURCES OF ENERGY 

Sun provides enormous amounts of energy powering oceans, atmospheric 

currents, and cycle of evaporation and drives river flow, hurricanes and tornadoes that 

destroy natural landscape. The San Francisco earthquake of 1906, with magnitude 7.8, 

released an estimated 1017 joules of energy which sun delivers in one second. Earth’s 

resource of oil mounts up to 3 trillion barrels containing 1.7×1022 joules of energy that 

the sun supplies in 1.5 days. Humans annually use about 4.6×1020 joules annually which 

sun supplies in one hour. The sun continuously supplies about 1.2×1025 terawatts of 

energy which is very much greater than any other renewable or non renewable sources of 

energy can provide. This energy is much greater than the energy required by human 

beings which is about 13 terawatts. By covering 0.16% of Earth’s land with 10% efficient 

solar cells would provide 20 Terawatts of energy about twice of fossil fuel consumption 

of the world including numerous nuclear fission reactors [1]. 

Solar energy is in abundance but only a little is used to directly power human 

activities. About 80%-85% of our total energy comes from fossil fuels. These resources 

are non renewable, fast depleting, produce greenhouse gases and other harmful 

environmental pollutants [2]. Threat to climate is one of the main concerns in adopting 

any resource as a primary source of energy. Fossil Fuels emit a large volume of green 

house gas like CO2 into the atmosphere and disturb the ecological balance. These 

emissions have been increasing due to overutilization of fuels to meet the ever expanding 
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needs of human society. The solutions for this problem are to use fossil fuels in 

conjunction with carbon sequestration, nuclear power and solar power. Carbon 

sequestration is an extremely difficult method since a large volume of space is required to 

store the emitted green house gases and its maintenance is a very crucial issue. Nuclear 

power seems to be a good option but the feasibility of deploying several thousands of 

1Gegawatt power plants all over the world to meet the 10Tera watt demand of the society 

is skeptical. The Uranium resource for these power plants on earth also gets exhausted in 

this process in about 10 years after which the processing of sea water has to be adopted 

which is also exhaustible and difficult. On the other hand shifting the focus on renewable 

sources of energy is the ideal choice and solar power is by far the most prominent energy 

source owing to its versatility, inexhaustible and environmental friendly features [1]. 

 

Figure 1.1 Annual Production of Oil [3] 
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The exhaustible nature of fossil fuels has also pushed us into the adoption of 

renewable sources of energy as the future. Fig1.1 shows the plot of the annual production 

of oil Vs year with a 2% annual growth and decline rate. We observe that these estimates 

show a very steep decline of this resource after the year 2016 thus demanding the need 

for an alternative source of energy [3]. The burgeoning solar cell market is maturing to 

become a very profitable investment to industries resulting in an annual growth of 41% in 

the last five years [4]. 

 

Figure 1.2 Global PV Installations by Year [4].  
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High costs and conversion efficiency have been the major bottlenecks in the 

potential of solar power becoming a primary source of energy. Nowadays major research 

done with the motive of improving the efficiency of these cells has brought this dream 

closer to reality. New methods of harnessing the full spectrum of the sun’s wavelength, 

mutlijunction solar cells (homojunctions and heterojunctions), and new materials for 

making solar cells are paving way for solar power to be the emerging power resource for 

the world at large. 

 

Figure 1.3 Best Research Cell Efficiencies [5]. 

II. GENERATIONS OF SOLAR CELLS 

Solar cells are categorized into three generations based on the order of their 

prominence. Research is being conducted on all the three generations concurrently to 
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improve their efficiencies while the first generation solar cells comprise the major share 

of commercial production about 89.7% in 2007 [6]. 

Large area, high quality and single junction devices form the ‘first generation’ 

solar cells. Reduction in production costs of this technology is nullified owing to high 

energy and labor costs, material costs mostly for the silicon wafer, strengthened low-iron 

glass cover sheet and costs of other encapsulants. This trend is continuing as the 

photovoltaic industry is expanding. Although it has a broad spectral absorption range, the 

high energy photons at the blue and violent end of the spectrum is wasted as heat [7]. 

Producing solar cells using high-efficiency processing sequences with high energy 

conversion efficiency are thus favored provided they do not increase the complexity of 

the solar cell. Theoretical limit on efficiency for single junction silicon solar cells i.e. 

33% and this is also being reached very rapidly. 

 

Figure 1.4 First Generation Solar Cell Efficiencies [7]. 

To address these problems of energy requirements and production costs of solar 
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cells a switch from ‘first generation’ to ‘second generation’ of thin-film cell technology 

has been imminent. By eliminating the silicon wafer a major reduction in material costs 

have been possible in the thin-film technology. They also have an advantage of 

increasing the unit size from silicon (~100cm2) to glass plate (~1m2). Over time the 

second generation solar cells are expected to bridge the gap between them and the first 

generation cells with respect to energy conversion efficiency. With the increase in 

dominance of this technology the costs of the constituent materials also goes up for top 

cover and other encapsulants to give it a longer life [8]. 

The materials generally used in this thin film technology are cadmium telluride, 

copper indium gallium arsenide, amorphous silicon and micromorphous silicon. These 

materials reduce mass and therefore cost by forming substrates for supporting glass and 

ceramics. Not only do they reduce costs but also promise very high energy conversion 

efficiency. A trend towards shifting to second generation from first generation is showing 

up but the commercialization of this technology has proven to be difficult [8]. Fortunately 

with the development of new materials over the coming decades the future of thin-film 

technology seems to be promising [6]. 

Research for improving solar cell performance by enhancing its efficiency and 

pushing it closer to the thermodynamic limits has led to the development of third 

generation solar cells [8]. To improve upon the poor electrical performance of the thin-

film technology by maintaining low production costs this technology includes among 

others, non semiconductor technologies (including polymer based cells and biometrics) 

[9]. 
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Figure 1.5 Second Generation Solar Cell Efficiencies [7] 

The devices comprising the third generation solar cells are quantum dot 

technologies, tandem/multi junction cells, hot-carrier cells, up conversion technologies 

and solar thermal technologies like thermophotonics. 

 

Figure 1.6 Third Generation Solar Cell Efficiencies [7]. 
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III.  ULTIMATE LIMITS IN EFFICIENCY 

The steady evolutionary progress of the PV industry is the result of increase in 

automation of production of thin film solar cells with increased efficiency and lower 

costs. The need for revolutionizing breakthroughs in the PV industry is sometimes halted 

by the advancements in the PV materials and manufacturing technology leading to 

improvements in the cost competitiveness and the expansion of the PV market. By 

shattering the old limits of efficiency and cost by bringing about innovations by 

exploiting new understanding of physics and material science will become a fast paced 

revolution [4]. 

 

Figure 1.7 Narrowing gap between Existing and Theoretical PV efficiencies [4]. 

The maximum theoretical limit for a single junction solar cell without sunlight 

(one sun) is about 31% established by the Schokley-Quiesser limit. Under the highest 

possible amount of sunlight i.e. 50,000 suns a single junction solar cell can have a 
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maximum efficiency of about 41%. This efficiency value can be increased by using 

multi-junction solar cells by capturing more of the solar spectrum.  

The true limit of efficiency is the thermodynamic limit of 68% for PV with one 

sun concentration and is about 87% for maximum solar concentration. Research and 

development in the PV industry are developing technologies based on concepts such as 

multiple exciton generation, optical frequency shifting, multi energy level and hot carrier 

devices. Carbon nanotubes, organic materials and other nanofabrication technologies 

enable these concepts in practice [4]. 

 

Figure 1.8 Data showing potential magnitude of future improvements in performance across 

device configurations [4]. 
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IV. WORKING OF A SOLAR CELL 

 

Figure 1.9 Working of a pn diode solar cell [10]. 

When light shines on a pn diode it generated electron-hole pairs across the whole 

device. If the device is open circuited, the electron hole pairs generated near the depletion 

region tend to recombine with the charge in the depletion region, thus reducing the 

depletion region charge and eventually reducing the depletion region. The reduction in 

depletion region is equivalent of applying a forward bias to the device i.e. this reduction 

in depletion region tends to develop a potential across the open terminals of the device.   

The maximum voltage that can be developed is the maximum forward drop across the 
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device which theoretically is possible with the complete elimination of the depletion 

region. This maximum voltage that can be developed across the open circuited device is 

called the open circuit voltage represented by the point C in Fig 1.9. If the device is short 

circuited, the generated holes and electrons produce a current corresponding to the 

incoming photons. This current is called the short circuit current represented by the point 

A in Fig 1.9. When the pn device is used to drive an external load say ‘R’ the region of 

operation is somewhere in between these two points. The reason being a current I flow 

through the device which creates a drop across the resistor and the direction of the current 

is such that the device comes into forward bias condition. As there is some drop across 

the load and the device the maximum output voltage is not equal to open circuit voltage. 

The forward bias conducts the device in the direction opposite to the current generated by 

the photons called the dark current. The presence of the dark current does not allow the 

device to operate at short circuit current. Thus the device operates in the fourth quadrant 

where the voltage is positive but the current is negative making the power negative i.e. 

the device generates power using light as source. 

 

Figure 1.10 Current Voltage characteristics of solar cell [10]. 

 



   
 

 

12 

V. SOLAR CELL MODELLING HISTORY 

The photovoltaic community has demonstrated and proposed a wide variety of 

solar cell structures using a wide range of photovoltaic semiconductor materials. 

Numerical modeling has proved to be a valuable tool in understanding the operation of 

these devices. There are several numerical solar cell simulation programs in use. The first 

solar cell program was developed by Mark S. Lundstrom as part of his PhD Thesis [11]. 

Other programs developed at Purdue University at later times include Thin-Film 

Semiconductor Simulation Program (TFSSP) [12], Solar Cell Analysis Program in 1 

Dimension (SCAPlD), Solar Cell Analysis Program in 2 Dimension (SCAP2D) [13], 

PUPHS, and PUPHS2D [14]. These have been used to model a number of solar cells - 

thin-film Si:H, CdS/CIS, CdS/CdTe, Si, Ge, & GaAs cells in one spatial dimension and 

high efficiency Si and GaAs solar cells in two-dimensions. 

One-dimensional simulations are usually adequate for conventional geometry 

solar cells, especially at low solar intensities and for semiconductor materials that are not 

well characterized. At high intensities, 2D effects can become important even in 

conventional geometry solar cells and many high efficiency cell designs require 2D 

simulations or even 3D simulations. The interdigitated back contact solar cell is an 

example of a 2D geometry and the point contact solar cell is an example of an inherently 

3D geometry.  

While the basic approach to modeling any of these devices is essentially the same, 

special purpose codes have typically been developed for each material. This usually 
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makes modification tedious since many different codes must be updated and tested. 

ADEPT (A Device Emulation Program and Toolbox) has been developed to address this 

problem by unifying the common components of all these codes [[12], [15]]. In addition, 

ADEPT was being developed to be a tool to examine novel materials and device 

structures. 

Today, there are numerous solar cell programs developed by researchers from all 

over the world and there are also commercial simulation tools that can do solar cells 

modeling. Among those the best programs are probably Silvaco [16] and Crosslight [17], 

even though Synopsis has announced that it also has some solar cell simulation 

capabilities [18]. In SILVACO, TFT is an advanced device technology simulator 

equipped with the physical models and specialized numerical techniques required to 

simulate amorphous or polysilicon devices including thin film transistors. Specialized 

applications include the large area display electronics such as Flat Panel Displays (FPDs) 

and solar cells. In Crosslight, APSYS, Advanced Physical Models of Semiconductor 

Devices, is based on 2D/3D finite element analysis of electrical, optical and thermal 

properties of compound and silicon semiconductor devices. Emphasis has been placed on 

band structure engineering and quantum mechanical effects. Inclusion of various optical 

modules also makes this simulation package attractive for applications involving 

photosensitive or light emitting devices and solar cells. For Si rear-contacted cells (RCC) 

with textured front surface, RT techniques are utilized to compute the enhanced optic 

absorption. Conversion efficiency could be improved with about 20.7% percent for 

certain textured devices and good agreement with the experimental can be obtained. 
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Other Si cells, like passivated emitter, rear totally diffused (PERT), and passivated 

emitter, rear locally diffused (PERL) cells can also be modeled with APSYS. While EDA 

giant Synopsys Inc hasn’t formally announced its solar cell simulation technology, the 

company discussed the capabilities of its Sentaurus technology as applied to solar cell 

design during the Semicon West tradeshow held in July, 2008. 

VI. PURPOSE AND CONTENT OF THIS THESIS 

The purpose of this M.S. Thesis was to develop an in-house 3D drift-diffusion 

solar cell code that includes shadowing effects and utilize this code in the simulation of a 

prototypical Si solar cell. The existence of an in-house tool has the advantage that we can 

do modifications of the tool to include effects not covered in the above-described 

commercial simulation modules. Other purpose of this tool is to serve as a test-bed for the 

development of a Monte Carlo simulator for modeling solar cells that also includes the 

degradation in the solar cell efficiency due to lattice heating. 

The thesis is organized as follows: In Chapter 2 we describe in details the 

theoretical model implemented in the simulator and the numerical methods used for the 

solution of the 3D Poisson and the 3D electron and hole continuity equations. In Chapter 

3 the results of the structures simulated have been presented. The I-V plots, Carrier 

density distributions, Potential profiles, Electric field profiles, effect of Shadowing, 

efficiency variation with the length of the device has been presented.  In the final Chapter 

i.e. Chapter 4 the summary and future work haven been stated. 



  Chapter 2 
  

 DRIFT DIFFUSION MODELING 

I. DRIFT DIFFUSION MODEL 

The semi classical transport of charges can be explained using BTE (Boltzmann 

Transport equation). However, the direct analytical solution of the BTE is difficult 

combined with the field solvers for device simulation. Therefore the predominant model 

providing solutions for the Drift Diffusion equations is generally used for traditional 

semiconductor device modeling. In this model the electric fields and spatial gradient of 

the carrier density is localized i.e. the current at a particular point only depends on the 

instantaneous electric field and concentration gradient of carriers at that point. 

The drift diffusion equations can be obtained by solving the BTE (Boltzmann 

Transport equation) by solving for the moments of this equation. For steady-state and 1D 

geometry, the use of relaxation time approximation for the BTE results in 

τ
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*
0 xvff

v

f
v

v

f
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eE −
=

∂
∂+

∂
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                                   (2.1) 

The assumption of parabolic bands has been considered for simplicity. The 

current density is defined as, 

∫= dvxvvfexJ ),()(             (2.2) 
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Here, the integral on the right –hand side represents the first moment of the 

distribution function. By multiplying eq. (2.1) by v on both sides and integrating over v  

we can relate it to the definition of the current. We thus obtain, 

[ ]
ττ e

xJ
dvxvvfdvvf

)(
),(

1
0 −=−∫∫                      (2.3) 

Since the equilibrium distribution function is symmetric inv , the first integral 

goes to zero. Therefore, we have 
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Integrating the above equation by parts we get, 
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∫∫
∞

∞−                     (2.5) 

The above equation can be written as, 

22 )(),( vxndvxvfv =∫            (2.6) 

Here, 2v represents the average of the square of the velocity. By introducing 

mobility */ meτµ =  and assuming that most of the average carrier energy (that is 

proportional to 2v  ) is due to the random thermal motion of the carriers we can replace 

this term with its equilibrium value i.e. */ mTkB  in 1D case and */3 mTkB  for 3D. By 

introducing the Diffusion coefficient D we obtain the drift diffusion equations as, 
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dx

dn
qDxExqnJ nnn += )()( µ  

dx

dp
qDxExqpJ ppp −= )()( µ                 (2.7) 

Even though no assumptions were made for the non-equilibrium distribution 

function ),( xvf the choice of the thermal velocity signifies that the-drift diffusion 

equations are only valid for small perturbations from the equilibrium state (low fields). 

Numerical schemes involving solution of the continuity equations follow the rules 

that the total charge inside the device as well as the charge leaving and entering the 

device must be considered. Carrier density localized in a place has to be positive i.e. 

negative density is unphysical.  Also, no spurious space oscillations have to be introduced 

i.e. monotonicity of the solution has to be maintained [19]. The complete drift-diffusion 

model, which includes the Poisson Equation and the continuity equations for electrons 

and holes is given below: 

 

II. SCHARFETTER GUMMEL DISCRETIZATION OF CONTINUITY EQUATIONS 

A. Discretization of the Continuity Equation 

Generally, conservative schemes are achieved by subdivision of the 

computational domain into boxes surrounding the mesh points. Currents are defined on 
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the boundaries of these elements, thus enforcing conservation. Consider the 1D electron 

current continuity equation under steady state equations: 

GJ
e n =∇.
1

                        (2.8)   

which by using half-point difference expansion based on the centered difference scheme, 

gives: 

i

n
i

n
i G

JJ

e
=

∆
− −+ )(

1 2/12/1            (2.9) 

where,   

dx

dn
eDEenJ n

ii
n
i

n
i 2/12/12/12/1 ++++ += µ                  (2.10) 

n
i

n
i

n
i

i
n
i

eD

J

D

En

dx

dn

2/1

2/1

2/1

2/12/1

+

+

+

++ =+
µ

                                            (2.11) 

n
i

n
i

t

i
n
i

eD

J

V

En

dx

dn

2/1

2/12/12/1

+

+++ =−
µ

                                      (2.12) 

We make use of the following, 
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Using Laplace transform and the conditions, 
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The equations (2.18) and (2.19) represent the discretization of the current density 

expressions that can be used to calculate the total current in the device. Thus, the 

discretized form of continuity equations for electrons and holes respectively is, 
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Scharfetter-Gummel scheme leads to positive definitive matrices eliminating the 

occurrence of complex Eigen valued coefficient matrices. Therefore the SOR (Successive 

over relaxation method) can be used as a numerical computation method. Linear 

interpolation schemes can be used in determining the half point values for the diffusion 

coefficient and carrier mobility, 
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= ii
i
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= ii
i

µµµ                   (2.22) 

Bernoulli function can be defined in the following way, 
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                               (2.23) 

where, 1x  through 5x  depend upon the computer [20].  

B. Numerical Solution of Continuity equation using Bi-Conjugate gradient stabilized 

method 

Conjugate gradient methods are very effective to solve large system of linear 

equations. The equations of the type, 

bAx =            (2.24) 

where x  is an unknown vector, b  is a known vector and A  is a known square, 

symmetric, positive definite matrix ( or positive indefinite matrix). Many numerical 

systems involving finite difference and finite element methods adopt this method to solve 

set of partial difference equations. These methods are generally used with sparse 

matrices. Dense matrices are very hard to solve as they have to be factorized which 

would take the same time as to solve it iteratively. Factorizing requires a lot of memory 

and it is much slower than the iterative methods. By the use of sparse matrices the 

efficiency and the memory utilization of the numerical methods improves [21]. 
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 This algorithm is used for a function of n variables for finding its local minimum 

under the assumption that the gradient of the function can be computed. Conjugate 

directions is used instead of local gradient for going downhill unlike steepest decent 

method and if the vicinity of the minimum is in the shape of a long narrow valley 

convergence is achieved much faster than the steepest decent method. It is the oldest and 

best known non stationary method for solving positive definite systems effectively. 

 Vector sequences of iterations which are successive approximations to the 

solution are generated, residues corresponding to these iterations are computed and 

directions used in updating these residues and iterations are searched for. The memory 

utilized by this algorithm is less since only a small number of sequences are required to 

be stored although the length of these vectors is large. In order to compute update scalars 

that are defined to make the sequences satisfy certain orthogonality conditions two inner 

products are performed for every iteration in this method. These conditions imply that the 

distance to the true solution is minimized on a positive definitive linear system. 

 The search direction vector )(ip  is found by updating the iterates )(ix in every 

iteration by a multiple iα  , 

 )()1()( i
i

ii pxx α+= −                                 (2.25) 

The residuals )()( ii Axbr −=  are updated as, 

 )()1()( i
i

ii qrr α−= −           (2.26) 



   
 

 

23 

where, 

 )()( ii Apq =                       (2.27) 

The proper choice of α  i.e. 
)()(

)1()1(

ii

ii

i
App

rr
T

T −−

=α  minimizes )(1)( ii rAr
T − over all possible 

choices of α . The residuals used in updating the search vectors are, 

 )1(
1

)()( −
−+= i

i
ii prp β           (2.28) 

where, 

 
)1()1(

)()(

−−
=

ii

ii

i
rr

rr
T

T

β           (2.29) 

This choice of iβ  is done to ensure that )(ip  and  )1( −iAp  i.e. the residuals 
Tir )( and  )1( −ir  

are orthogonal. It also makes )(ip  and 
Tir )(  orthogonal to all previous )( jAp and 

Tjr )(  

respectively. This algorithm is not preconditioned. The preconditioned form of Conjugate 

gradient method is done by using a preconditioner M (when M = 1 it is without 

preconditioning).  Thus, the pseudocode for preconditioned conjugate gradient method is, 

 Compute )0()0( Axbr −=  for some initial guess )0(x . For every value of i  we 

solve for )1()1( −− = ii rMz  and we have )1()1(
1

−−
− = ii

i zr
T

ρ  . The value of )(ip  is, 

 )0()1( zp =  (If 1=i )        else  )1(
1

)1()( −
−

− += i
i

ii pzp β    where, 
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2

1
1

−

−
− =

i

i
i ρ

ρβ  

The values of )(iq , iα , )(ix  and )(ir  are updated till convergence is reached. 

)()( ii Apq =  

)()(

1

ii

i
i

qp
T

−=
ρα  

)()1()( i
i

ii pxx α+= −     )()1()( i
i

ii qrr α−= −           

Conjugate gradient method has one matrix vector product, two inner products and 

three vector updates per iteration. This makes it computationally very attractive [22]. 

The residual vectors for non symmetric systems cannot be made orthogonal and 

therefore conjugate gradient method cannot be used to solve such systems. The 

orthogonality of the residues can be maintained by using long sequences as per the 

generalized minimal residual method but at the cost of lot of storage space. Another 

approach can be followed by using two mutually orthogonal sequences instead of the 

orthogonal sequences of residuals called the Bi conjugate gradient Method (BCG).The 

update sequences of the two residuals are, 

)()1()( i
i

ii Aprr α−= −   )(~)1(~)(~ iT
i

ii pArr α−= −                            (2.30) 

and the two search direction vectors are, 
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 )1(
1

)1()( −
−

− += i
i

ii prp β  )1(~
1

)1(~)(~ −
−

− += i
i

ii prp β      (2.31) 

The choices are, 

 
)()(~

)1()1(~

ii

ii

i
App

rr
T

T −−

=α   
)1()1(~

)()(~

−−
=

ii

ii

i
rr

rr
T

T

β       (2.32) 

ensuring orthogonality relations, 

 0)()(~)()(~ == jiji Apprr
TT

         (2.33) 

 Thus we observe that updates for the residuals in conjugate gradient method are 

augmented in the bi-conjugate gradient method by the relations that are similar but based 

on TA  instead ofA  [22]. 

 The algorithm for BCG method is, (if ji ≠ ) 

Compute )0()0( Axbr −=  for some initial guess )0(x . Choose )0(~r (for example 

)0()0(~ rr = ). For every value of i  we solve for )1()1( −− = ii rMz  and )1(~)1(~ −− = iiT rzM . We 

also have )1(~)1(
1

−−
− = ii

i rz
T

ρ  . If 01 =−iρ  then the method fails. The value of )(ip  and 

)(~ ip  are, 

  )1()( −= ii zp     )1(~)(~ −= ii zp  (If 1=i )   

else   )1(
1

)1()( −
−

− += i
i

ii pzp β  )1(~
1

)1(~)(~ −
−

− += i
i

ii pzp β      where, 
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2

1
1

−

−
− =

i

i
i ρ

ρβ    

The values of )(iq , )(~ iq , iα , )(ix , )(ir  and )(~ ir  are updated till convergence is 

reached as, 

)()( ii Apq =    )(~)(~ iTi pAq =  

)()(

1

ii

i
i

qp
T

−=
ρα  

)()1()( i
i

ii pxx α+= −    

)()1()( i
i

ii qrr α−= −      )(~)1(~)(~ i
i

ii qrr α−= −        

The above algorithm when used for positive definite symmetric matrices gives the 

same result as the conjugate gradient stabilized method but at twice the cost per iteration. 

For non symmetric matrices this method is more or less similar to the generalized 

minimal residue method although a significant reduction in the norm of the residual is 

observed.  

 To avoid the irregular pattern in the convergence of the conjugate gradient 

squared method the Bi-conjugate gradient stabilized method was developed. Instead of 

computing the conjugate gradient squared method sequence )0(2 )( rAPi i→ , BCGSTAB 

uses )0()()( rAPAQi ii→  where Q  is an thi degree polynomial describing the steepest 

decent update. This algorithm requires two-matrix vector products, four inner products 
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which is two more than the conjugate gradient squared method or the bi-conjugate 

gradient method. The algorithm is [22], 

 Compute )0()0( Axbr −=  for some initial guess )0(x . Choose )0(~r (for example 

)0()0(~ rr = ). For every value of i  we calculate )1(~
1

−
− = iT

i rrρ . If 01 =−iρ  then the 

method fails. The value of )(ip  is, 

 )1()( −= ii rp  (If 1=i )        else  )( )1(
1

)1(
1

)1()( −
−

−
−

− −+= i
i

i
i

ii vprp ωβ    where, 

 ))((
1

1

2

1
1

−

−

−

−
− =

i

i

i

i
i ω

α
ρ
ρβ  

We solve for )(~ ipMp = . The values of iα  and s are given by, 

 
)(~

1
iT

i
i vr

−=
ρα   )()1( i

i
i vrs α−= −    

We check norm ofs ; if small enough: set ~)1()( pxx i
ii α+= −  and stop. We then solve 

for sMs =~ . We updatet , iω , )(ix  and )(ir  till convergence is achieved, 

 ~Ast =  

 
tt

st
T

T

i =ω  

 ~~)1()( spxx ii
ii ωα ++= −  
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III.  POISSON EQUATION SOLVER 

A. Discretization of the 3D Poisson Equation 

The potential variation in a semiconductor device can be determined by solving 

the Poisson equation, 

)().( +− −+−==∇∇ DA NNpnqρψε         (2.24) 

where ε is the dielectric constant of the corresponding semiconductor, ψ is the 

electrostatic potential, ρ is the total charge density, q is the elementary charge, n  is the 

electron concentration, p represents the hole concentration, AN −  is the ionized acceptor 

concentration and DN +  is the ionized donor concentration. 

 The electron and hole densities at thermal equilibrium for non degenerate 

materials is given by, 

 
( )F i

B

E E

k T
in n e

−

=   
( )i F

B

E E

k T
ip p e

−

=         (2.25) 

where n and p represent the electron and hole concentration respectively, ni is the 

intrinsic carrier concentration, EF is the Fermi Energy level and Ei  the intrinsic energy 

level. Taking EF =0 i.e. the Fermi energy level being the reference and representing 

Energy in terms of potential i.e. iE qψ= −  we get, 
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 in n eφ=   ip p e φ−=                    (2.26) 

Here ψ  represents the potential,φ  represents the normalized potential i.e. ψ  is 

normalized with the thermal voltage /T BV k T q= . Assuming the device is made of the 

same material i.e. no variation inε , Poisson equation can be represented as 

2 '( )i

T

qn
e e C

V
φ φφ

ε
−∇ = + +                     (2.27) 

where the normalized dopant concentration is represented by 'C  and ' ( ) /A D iC N N n− += −  

 

Figure 2.1 Central difference scheme in 3D leading to a 7-point discretization stencil 

Expressing the second derivative of the potential in the Poisson equation using the 

Central difference scheme as shown in Figure 2.1 in all the three directions we obtain, 

2
, , 1, , , , 1, ,

2
1 1 1 1

2 2 2

( ) ( )
i j k i j k i j k i j k

i i i i i i i ix x x x x x x x x

φ φ φ φ+ −

− − − −

∂
= − +

∂ + +
                  (2.28) 
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2
, , , 1, , , , 1,

2
1 1 1 1

2 2 2

( ) ( )
i j k i j k i j k i j k

j j j j j j j jy y y y y y y y y

φ φ φ φ+ −

− − − −

∂
= − +

∂ + +
, and     (2.29) 

2
, , , , 1 , , , , 1

2
1 1 1 1

2 2 2

( ) ( )
i j k i j k i j k i j k

k k k k k k k kz z z z z z z z z

φ φ φ φ+ −

− − − −

∂
= − +

∂ + +
      (2.30) 

By combining all these three equations we can get the expression for 2φ∇ . The mesh 

sizes along the x, y and z direction are given byix , jy  and kz , respectively, as shown in 

Figure 2.1. Thus the finite-difference representation of the 3D Poisson equation is given 

by, 

1, , , , 1, , , , , 1, , , , 1, , ,

1 1 1 1 1 1( ) ( ) ( ) ( )
i j k i j k i j k i j k i j k i j k i j k i j k

i i i i i i j j j j j jx x x x x x y y y y y y

φ φ φ φ φ φ φ φ+ − + −

− − − − − −

− − − −
+ + + +

+ + + +
 

                    , , 1 , , , , 1 , , '
, , , , , ,2

1 1 1

1
( )

( ) ( ) 2
i j k i j k i j k i j k

i j k i j k i j k
k k k k k k D

C n p
z z z z z z L

φ φ φ φ+ −

− − −

− −
+ + = + −

+ +
         (2.31)     

where the intrinsic Debye length, ( )D T iL V qnε= . The carrier concentrations n and p 

are normalized by the intrinsic concentration, ni as given by Equation (2.31). The above 

equation can also be represented as,  

, , , , 1 , , , 1, , , 1, , , , , ,i j k i j k i j k i j k i j k i j k i j k i j kB C D Eφ φ φ φ− − −+ + + +  

                  , , 1, , , , , 1, , , , , 1 , ,i j k i j k i j k i j k i j k i j k i j kF G H Qφ φ φ+ + ++ + + =                                  (2.32)   

where 
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, ,
1 1

2

( )i j k
k k k

B
z z z− −

=
+

                                    , ,
1 1

2

( )i j k
j j j

C
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=
+

 

, ,
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2

( )i j k
i i i

D
x x x− −

=
+

                                    , ,
1

2

( )i j k
i i i

F
x x x −

=
+

                     (2.33) 

, ,
1

2

( )i j k
j j j

G
y y y −

=
+

                                    , ,
1

2

( )i j k
k k k

H
z z z −

=
+

, 

, ,
1 1 1

2 2 2
i j k

i i j j k k

E
x x y y z z− − −

 
= − + +  

 
               ( )'

, , , , , , , ,i j k i j k i j k i j kQ C n p= + −   

It is important to note that all the discretization increments ix , jy  and kz  appearing in Eq. 

(3.10), are normalized with the intrinsic Debye length DL . Charge neutrality condition is 

used to calculate the initial concentration for n and p for a good initial guess for potential 

in the RHS of equation (2.32). 

B. Linearization of the Discretized 3D Poisson Equation 

A matrix equation Ax=b is formed when the Poisson equation of the form as 

represented in equation (2.32) is solved for the entire device divided into nodes. Here A is 

the discretization matrix, x is the unknown potential and b is the forcing function, also 

called the forcing vector (charge, in the case of Poisson equation). This form of the 

equation cannot be directly used to numerically solve for the potential profile in the 

device as it leads to instabilities since the RHS of the equation (2.32) has an exponential 

relation to the potential φ  through the carrier concentrations n and p. The center 
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coefficient E is not diagonally dominant as compared to the other coefficients B, C, D, F, 

G and H in the matrix A. Fast convergence demands the matrix to be diagonally dominant 

i.e. the coefficient on the diagonal is larger than the sum of the other non diagonal 

elements. In order to achieve diagonal dominance for the coefficient matrix A Poisson 

equation has to be linearised. To achieve the above the first update of the potential is 

defined as [23] 

1n n nφ φ δ+ = +                       (2.34) 

where the potential in the next update is 1nφ +  and is calculated by using the potential from 

the previous iteration nφ  and a correction factornδ . By substituting the above variables 

in the Poisson equation we get, 

 ( )2 1 '
2

1 n n n nn

D

e e C
L

φ δ φ δφ + + − −∇ = − +                    (2.35) 

Assuming the update of potential between iterations being small i.e. for small δ  

Taylor’s series can be used for the exponential function 1e δ δ± = ± . Thus the Poisson 

equation becomes, 

( ) ( )2 1 '
2 2

1 1n n n nn n

D D

e e C e e
L L

φ φ φ φφ δ+ − −∇ = − + + −       (2.36) 

By replacing nδ in equation (2.36) with 1nφ +  and nφ by using equation (2.34) we obtain, 

 ( ) ( ) ( )2 1 1 '
2 2 2

1 1 1n n n n n nn n n

D D D

e e e e C e e
L L L

φ φ φ φ φ φφ φ φ+ − + − −∇ − − = − + − −         (2.37) 
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 In the above equation index n represents the iteration number and not the node 

number. By using central difference scheme equation (2.37) can be expressed in terms of 

equation (2.32). The center coefficient E and the forcing function Q can be expressed as 

[24], 

 ( ), , , , , ,2
1 1 1

2 2 2 1
i j k i j k i j k

i i j j k k D

E n p
x x y y z z L− − −

 
= − + + − +  

 
 

 ( ) ( )'
, , , , , , , , , , , , , ,2

1
i j k i j k i j k i j k i j k i j k i j k

D

Q C n p n p
L

φ= + − − +                  (2.38) 

To make the center coefficient diagonally dominant and increase the speed and 

stability of the convergence the linearization of Poisson equation is done. In addition the 

center coefficient is now dependent on the electron and hole carrier concentrations, thus 

have to be updated for every iteration. Aφ    

C. Boundary Conditions 

Ohmic and artificial contacts in the device structure can be described by making 

modifications to the coefficients B through H, and the forcing function Q. These 

modifications are, 

• Ohmic contacts are implemented by fixing the potential at these points equal to 

the sum of the external bias applied Aφ  and the potential due to charge 

neutrality bV . This is called Dirichlet condition and is implemented as, 
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         A bVφ φ= + ,          (2.39) 

        0B C D F G H= = = = = = , 1E =   and A bQ Vφ= + . (2.40) 

• Simulation domain is fixed in size and therefore has to be truncated. This can be 

done by using artificial boundaries and the boundary condition enforced is called 

Neumann condition. It is implemented by making the field across the boundary 

equal to zero i.e.,  

         0
r

φ∂ =
∂
� .                                                                                                    (2.41) 

Using central difference scheme equation (2.41) can be written as, 

        1 1 0i i

ix

φ φ+ −− =   or   1 1i iφ φ+ −= ,                                                                    (2.42) 

The same concept is also used for the other directions. Using equation (2.42) in 

the discretization of the coefficients B  through H  we obtain, 

0z =  :  0B = ,  2H H= ,                           maxz z= :  2B B= ,  0H = , 

0y =  :  0C = ,  2G G= ,   maxy y= :  2C C= ,  0G = ,     (2.43)  

0x =  :  0D = ,  2F F= ,      maxx x= :  2D D= ,  0F = .                    

        

          



  Chapter 3 
  

 SIMULATION RESULTS 

The theory behind the simulation of the solar cells and the corresponding models 

used was explained in Chapter 2. The self consistent solution of the Poisson and 

continuity equations is used to simulate the potential and carrier profiles in the device. By 

extracting the current densities from the simulation, open circuit voltage and short circuit 

current can be evaluated to find the efficiency of the silicon solar cell. 

The following Chapter is divided broadly into four parts; first part explains the 

silicon solar cell structures simulated and the inputs regarding the solar radiation and 

absorption coefficients of the material, second part presents the simulation results for 

these structures under illumination without any shadowing or surface recombination 

effects i.e. assuming transparent contacts, third part of the chapter deals with the 

simulation of these structures with shadowing and surface recombination effects and the 

final part explains the methodology adapted in calculation of efficiency and the plots for 

the trends in efficiency with the variation in structure dimensions is presented. 

I. STRUCTURES SIMULATED AND INPUTS USED FOR THE SIMULATION 

Initially to inspect the effectiveness of drift-diffusion modeling for solar cells a 

1D simulation for a p-n junction silicon solar cell was performed. It is a single junction 

with uniformly doped layers and a single sun radiation is utilized as the energy source for 

the device. The device is simulated with the assumption of transparent contact i.e. no 

shadowing and surface recombination. 
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Figure 3.1 p-n junction Silicon Solar Cell 

The solar radiation which is used in this simulation is the ASTM G173-03 

Reference spectra derived from SMARTS v. 2.9.2 for AM1.5 one sun. The solar 

spectrum used is, 

 

Figure 3.2 Solar spectrum for AM 1.5 
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The solar spectrum in Figure 3.2 is used to input the Photon Intensity into the 

simulation which is utilized to calculate the number of carrier contribution by individual 

wavelengths in the solar cell. The other parameter which is required to find out the 

effective number of photons absorbed i.e. the extent to which the device absorbs energy 

is a material and wavelength dependent parameter called the absorption coefficient. It 

thus helps in describing the energy propagation through a homogeneous system [25]. The 

absorption coefficient for silicon is poor since it is an indirect band gap material i.e. the 

bottom of the conduction band and the top of the valence band are not aligned at the same 

wave vector. This demands change in energy as well as momentum for the photon to be 

absorbed to generate carriers contributing to current thus reducing the probability for the 

absorption of photons and resulting in lower values of absorption coefficients. 

 

Figure 3.3 Absorption Coefficients Vs Wavelength for Silicon 
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The structure simulated to emulate the realistic solar cell is an n+-p-p+ structure 

with the p+ region forming the bottom contact and the n+ region forming the top surface. 

The structure is simulated for 25% and 50% of top metal and the rest of the window 

exposed to the solar radiation and prone to surface recombination phenomenon. 

 

Figure 3.4 Simulated n+-p-p+ Silicon Solar cell structure 

The structure is simulated for various base thicknesses i.e. 2.4µm, 5.4µm and 

8.4µm. The solar radiation is incident normally onto the top surface and the metal is 

considered to be purely reflective in the simulation.  
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II. SIMULATION RESULTS UNDER ILLUMINATION 

Initial simulations were done on a pn-junction silicon solar cell as a one 

dimensional simulation to evaluate the use of drift diffusion modeling for solar cells. For 

a solar cell the I-V plot is in the fourth quadrant as was explained in Chapter 2. The 

current density vs. voltage plot obtained for the pn junction silicon solar cell is, 

 

Figure 3.5 Current Density Vs Voltage for a pn junction Silicon Solar cell 

In Figure 3.5 we observe that the plot has been flipped with respect to the X axis 

to represent the current density as positive values. Thus we see the shift the I-V plot when 

the device is illuminated and contributing to dark current. The open circuit voltage is 

around 0.55V and short circuit current density of around 20 2/ cmmA .  

From the simulations it is thus proved that drift diffusion modeling works fine in 



   
 

 

40 

solving for the current in a solar cell. Now the simulation was done on a more practical 

device i.e. n+-n-p+ structure with p+ forming the back contact. Initially transparent 

contacts were assumed with no shadowing or surface recombination. The equilibrium 

simulation results for the n+-p-p+ structure are,  

 

Figure 3.6 Equilibrium Potential Profile of an n+-p-p+ structure 

 

Figure 3.7 Equilibrium Electric Field of an n+-p-p+ structure  
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 Figure 3.6 and 3.7 represent the Potential Profile and the Electric field 

respectively at Equilibrium i.e. with no applied bias. In this case only Poisson equation is 

solved to obtain the potential profile and the carrier densities related exponentially to the 

potential as no transport is involved. The equilibrium carrier densities are, 

 

Figure 3.8 Equilibrium Electron Density Profile of an n+-p-p+ structure 

 

Figure 3.9 Equilibrium Hole Density Profile of an n+-p-p+ structure 
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Now the device is illuminated with one sun AM 1.5 and in this cases both Poisson and 

drift diffusion equations have to be solved self consistently since transport of carriers is 

involved leading to production of current. The generation recombination mechanisms 

included in this simulation are Auger recombination, thermal generation recombination, 

radiative recombination and generation due to the incoming light source. The carrier 

density profile under Illumination is, 

 

Figure 3.10 Electron Density Profile of an n+-p-p+ structure under Illumination 

From Figure 3.10 we observe that there is an increase in the electron carrier 

density and this is seen in the p-base region and also the p+ region as the electron 

concentration in these regions are low. The generation of carriers is not high in the n+ 

region of the device due to high doping concentration of donors. The hole carrier density 

is also altered in a similar fashion by the incoming solar radiation as it produces equal 

number of electrons and holes. This can be observed in Figure 3.11, 
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Figure 3.11 Hole Density Profile of an n+-p-p+ structure under Illumination 

The potential profile under illumination as shown in Figure 3.12 is not very much 

visibly different from the equilibrium potential profile as simulated in Figure 3.6 i.e. it 

does not show a big difference as seen in the case of the carrier concentrations since the 

dependence of carrier densities on potential is exponential. 

 

Figure 3.12 Potential Profile of an n+-p-p+ structure under Illumination 
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When solar radiation starts generating carriers in the device it tends to decrease 

the electric field in the depletion region and this is observed in the simulation. In Figure 

3.13 the difference between the electric field before and after the simulation is taken. 

 

Figure 3.13 Difference in Electric field profile before and after simulation  

We observe from Figure 3.13 that there is a reduction in the electric field and this 

complies with the concept of working of a solar cell. As solar radiation creates large 

number of carriers, these carriers tend to recombine with the charges in the depletion 

region and thus reduce the field. 

Simulations were also done for a p+-p-n+ structure and similar results were 

extracted. Simulations were also done for varying widths of the base region for both n+-

p-p+ structures and p+-p-n+ structures. 
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Figure 3.14 Simulations of Potential, Electron and Hole Density Carrier Profiles under no light 

and under Illumination 

III.  SIMULATION RESULTS UNDER ILLUMINATION WITH SHADOWING AND SURFACE 

RECOMBINATION 

The simulations presented in the previous section were under the assumption of 

transparent contacts but in reality the contacts are not 100% transparent and do posses 

some reflectivity. This tends to reduce the amount of solar radiation entering the device 

structure leading to reduced number of carrier generation resulting in decrease in 

efficiency of the solar cell. Thus, the top contacts are made to be optimally in small 

percentage in comparison to the window to allow maximum incoming radiation to go 

through the device. The window exposed has some defects in it and thus leads to surface 
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recombination effect. This also tends to reduce the efficiency of the solar cell as certain 

numbers of carriers are lost at the surface. 

Simulation has been performed for contact areas of about 25 and 50% of the top 

surface. The carrier profile for a contact area of about 50% of the top surface for a base 

width of 5.4 mµ  is, 

 

Figure 3.15 Hole Density Profile under Illumination with Shadowing (n+-p-p+) 

We observe from Figure 3.15 that there is a gradient in the carrier density profile 

under the top metal contact. This is because there are a huge number of carriers that are 

generated due to the incoming solar radiation through the window and almost no 

generation under the metal contact (as in this simulation the metal is assumed to have 

100% reflectivity) and therefore the carriers see a concentration gradient and tend to 

diffuse under the contact . Thus, Shadowing of the metal contact and surface 
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recombination phenomenon play a very important role in determining the efficiency of 

the solar cell. 

IV. EFFICIENCY CALCULATION AND TRENDS IN EFFICIENCY 

The efficiency of the cell is calculated using the expression, 

in

scoc

P

FFIV
=η  

where η represents the efficiency of the solar cell, ocV is the open circuit voltage, scI  

represents the short circuit current, FF  represents the Fill factor and inP  represents the 

input power of the incoming solar radiation and 

 FFIVP scocm =   

where mP  represents the maximum power [26]. The input power is calculated in the 

following way, 

 whdPPin ))((
2

1

λλ
λ

λ
∫=   

where 1λ  and 2λ  represent the range of wavelengths which comprises the incoming solar 

radiation,w  represents the width of the structure and h  represents the height of the 

structure. This width and height are the dimensions of the window of the structure. 
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 The efficiencies are calculated for the structures for various lengths of the base 

width i.e. 2.4 mµ , 5.4 mµ  and 8.4 mµ . With the increase in the base width the efficiency 

goes up but the trend tends to start drop down after reaching a peak. By reducing the base 

thickness of the substrate the photo generated current decreases since the longer 

wavelength photons corresponding to lower energy travel longer distances before getting 

absorbed into the material. But by reducing the thickness of the substrate the efficiency 

also increases since the ratio of diffusion length to the thickness of the substrate increases 

and this enhances the collection efficiency of minority carriers [27]. Figure 3.16 shows 

the trend of efficiency with the base width thickness of the device, 

 

Figure 3.16 Efficiency Vs thickness of base (n+-p-p+) 
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The complete efficiency trend is not extracted and the simulation is done for a 

maximum thickness of 8.4mµ  due to extreme increase in simulation time with further 

increase in thickness of the base. 

 

 



  Chapter 4 
  

 CONCLUSIONS AND FUTURE WORK 

I. CONCLUSIONS 

This chapter summarizes the key features of this research and its results. This is 

followed by the plan for future research work. Summarizing the work done, a Drift-

Diffusion model has been utilized to model the working of a silicon solar cell. The self 

consistent solution of the potential and carrier distribution is obtained by the coupled 

solution of the Poisson equation and the continuity equations. The structures that were 

simulated were a p-n diode, p+-p-n+ structure and n+-p-p+ structure. These structures 

were simulated with transparent contacts and the generation of carriers was evident from 

the carrier density plots and also the I-V plot presented in the previous Chapter. The 

shadowing of the top contact plays a very important role as it decreases the total       

photogeneration rate in the device and thus changing the efficiency of the cell. The 

surface recombination phenomenon is also incorporated in the code in the exposed 

window region and this also causes the loss of carriers thus reducing the efficiency. The 

decrease in efficiency is observed from the transparent contact to the incorporation of 

shadowing and surface recombination effects. The efficiency of the device changes with 

the base region thickness since its ability to capture low energy photons (higher 

wavelengths) increases and thus increasing the efficiency but the efficiency starts 

decreasing after reaching a critical length. The increasing trend in efficiency was 

observed in simulation but the structure thickness was not increased enough to see the 

decreasing trend due to limitation of the simulation time. 
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II. FUTURE WORK 

The simulations presented here have been done on a silicon solar cell 

homojunction but the code is generalized to incorporate heterojunctions. Thus high 

efficiency solar cells can be effectively simulated using the above model. Photon 

Recycling has not been included in the present version of the code. Reverse leakage 

currents due to radiative recombination play a very significant role in the performance of 

a solar cell. The reduction of this current component plays a big role in increasing the 

open circuit voltage of the cell and thus the efficiency. Photon recycling helps in reducing 

the effective recombination rate when near band edge radiative recombination play a 

dominant role in the device [28].  

The model used in the simulation of the device i.e. Drift Diffusion Model which 

has limitations that it is not a very good model for high field conditions and does not 

include scattering mechanisms as accurately as one can do in a particle based device 

simulators. The inclusion of thermal effects can also play a significant role in the working 

of a solar cell when operated under concentrated sunlight and this can also be done in a 

more proper way using particle based device simulation scheme as we have demonstrated 

recently on the description of the operation of FD SOI Devices. Thus, our ultimate goal is 

to move to a more detailed picture of transport in both single and multi-junction solar 

cells by utilizing particle based device simulations of solar cells in near future. 
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