
Multigrid Overview

James Demmel, Dragica Vasileska and Marco
Saraniti

History of Multi-Grid Method

Literature

Complexity of linear solvers

O(n1.17)O(n1.25)CG, modified IC:

O(n1.75) -> O(n1.31)O(n1.20) -> O(n1+)CG, support trees:

O(n1.33)O(n1.5)CG, no precond:

O(n2)O(n2)CG, exact arithmetic:

O(n)O(n)Multigrid:

O(n2)O(n1.5)Sparse Cholesky:

3D2D

n1/2 n1/3

Time to solve
model problem
(Poisson�s
equation) on
regular mesh

Outline and Review

° Review Poisson equation

° Overview of Methods for Poisson Equation

° Jacobi�s method

° Red-Black SOR method

° Conjugate Gradients

° FFT

° Multigrid

Reduce to sparse-matrix-vector multiply
Need them to understand Multigrid

2D Poisson�s equation

° Similar to the 1D case, but the matrix T is now

° 3D is analogous

4 -1 -1

-1 4 -1 -1

-1 4 -1

-1 4 -1 -1

-1 -1 4 -1 -1

-1 -1 4 -1

-1 4 -1

-1 -1 4 -1

-1 -1 4

T =

4

-1

-1

-1

-1

Graph and �stencil�

Multigrid Motivation

° Jacobi, SOR, CG, or any other sparse-matrix-vector-
multiply-based algorithm can only move information
one grid call at a time for Poisson
� New value at each grid point depends only on neighbors

° Can show that decreasing error by fixed factor c<1
takes at least O(n1/2) steps
� See next slide: true solution for point source like log 1/r

° Therefore, converging in O(1) steps requires moving
information across grid faster than just to
neighboring grid cell per step

Multigrid Motivation

Multigrid Overview

° Basic Algorithm:
� Replace problem on fine grid by an approximation on a coarser

grid

� Solve the coarse grid problem approximately, and use the
solution as a starting guess for the fine-grid problem, which is
then iteratively updated

� Solve the coarse grid problem recursively, i.e. by using a still
coarser grid approximation, etc.

° Success depends on coarse grid solution being a
good approximation to the fine grid

Multigrid uses Divide-and-Conquer in 2 Ways

° First way:
� Solve problem on a given grid by calling Multigrid on a coarse

approximation to get a good guess to refine

° Second way:
� Think of error as a sum of sine curves of different frequencies

� Same idea as FFT solution, but not explicit in algorithm

� Each call to Multgrid responsible for suppressing coefficients of sine
curves of the lower half of the frequencies in the error (pictures later)

Multigrid Sketch (1D and 2D)

° Consider a 2m+1 grid in 1D (2m+1 by 2m+1 grid in 2D) for simplicity

° Let P(i) be the problem of solving the discrete Poisson equation
on a 2i+1 grid in 1D (2i+1 by 2i+1 grid in 2D)
� Write linear system as T(i) * x(i) = b(i)

° P(m) , P(m-1) , � , P(1) is sequence of problems from finest to
coarsest

Multigrid Hierarchy

Relax

InterpolateRestrict

Relax

Relax

Relax

Relax

Slide source: Geoffrey Fox

Multigrid Operators
° For problem P(i) :

� b(i) is the RHS and

� x(i) is the current estimated solution

� (T(i) is implicit in the operators below.)

° All the following operators just average values on neighboring grid
points

� Neighboring grid points on coarse problems are far away in fine problems, so
information moves quickly on coarse problems

° The restriction operator R(i) maps P(i) to P(i-1)

� Restricts problem on fine grid P(i) to coarse grid P(i-1) by sampling or averaging

� b(i-1)= R(i) (b(i))

° The interpolation operator In(i-1) maps an approximate solution x(i-1)
to an x(i)

� Interpolates solution on coarse grid P(i-1) to fine grid P(i)

� x(i) = In(i-1)(x(i-1))

° The solution operator S(i) takes P(i) and computes an improved
solution x(i) on same grid

� Uses �weighted� Jacobi or SOR

� x improved (i) = S(i) (b(i), x(i))

° Details of these operators after describing overall algorithm

both live on grids of size 2i-1

3-D Prolongation

The arrows denote the coarse grid points to be used for
interpolating the dense grid point. The numbers attached to the
arrows denote the contribution of the specific coarse grid point.

Trilinear interpolation between the grids

2-D Prolongation























4

1

2

1

4

1
2

1
1

2

1
4

1

2

1

4

1

Ref: Can K. Sandalci, Ç. K. Coç, S. M. Goodnick: Three Dimensional Monte Carlo
Device Simulation with Parallel Multigrid Solver. PPSC 1997

2-D Restriction























16

1

8

1

16

1
8

1

4

1

8

1
16

1

8

1

16

1

A 27-point full weighting scheme is used. The number in front of
each grid point denotes its weight in this operation.

3-D Restriction

1. pre-smoothing on n

2. restriction of r to n-1

3. solution of Ae=r on n-1

4. prolongation of e to n

5. post-smoothing on n

Multigrid method:
two-grid iteration to solve Av=f on grid n

2.

3.

4.

5.

1.n

n-1

Coarsening techniques: importance of boundaries I

18 points 17 points

When the number of points in one dimension is 2N+2 (N being
a natural number), a geometric mismatch is generated in the
coarser grids, which show pronounced in-homogeneity. The
convergence of the method is severely slowed down in these
cases.

initial grid

nice coarseninghorrible coarsening

Coarsening techniques: importance of boundaries II

initial grid

post-smoothing often
required on these
points

propagation of a contact (Neumann BC) through grids

no post-smoothing
is required

Coarsening techniques: simple application

Grid points X-points Y-points coarsening

7 22962 258 89 X,Y
6 5850 130 45 X,Y
5 1518 66 23 X,Y
4 408 34 12 X,Y
3 126 18 7 X,Y
2 40 10 4 X
1 24 6 4 X
0 16 4 4 -

Multigrid V-Cycle Algorithm

Function MGV (b(i), x(i))

� Solve T(i)*x(i) = b(i) given b(i) and an initial guess for x(i)

� return an improved x(i)

if (i = 1)

compute exact solution x(1) of P(1) only 1 unknown

return x(1)

else

x(i) = S(i) (b(i), x(i)) improve solution by

damping high frequency error

r(i) = T(i)*x(i) - b(i) compute residual

d(i) = In(i-1) (MGV(R(i) (r(i)), 0)) solve T(i)*d(i) = r(i) recursively

x(i) = x(i) - d(i) correct fine grid solution

x(i) = S(i) (b(i), x(i)) improve solution again

return x(i)

Why is this called a V-Cycle?

° Just a picture of the call graph

° In time a V-cycle looks like the following

Complexity of a V-Cycle on a Serial Machine

° Work at each point in a V-cycle is O(# unknowns)

° Cost of Level i is (2i-1)2 = O(4 i)

° If finest grid level is m, total time is:

O(4 i) = O(4 m) = O(# unknowns)
m

i=1

Full Multigrid (FMG)

° Intuition:
� improve solution by doing multiple V-cycles

� avoid expensive fine-grid (high frequency) cycles

Function FMG (b(m), x(m))

� return improved x(m) given initial guess

compute the exact solution x(1) of P(1)

for i=2 to m

x(i) = MGV (b(i), In (i-1) (x(i-1)))

° In other words:
� Solve the problem with 1 unknown

� Given a solution to the coarser problem, P(i-1) , map it to starting guess
for P(i)

� Solve the finer problem using the Multigrid V-cycle

Full Multigrid Cost Analysis

° One V for each call to FMG
� people also use Ws and other compositions

° Serial time: O(4 i) = O(4 m) = O(# unknowns)
m

i=1

The Solution Operator S(i) - Details

° The solution operator, S(i), is a weighted Jacobi

° Consider the 1D problem

° At level i, pure Jacobi replaces:

x(j) := 1/2 (x(j-1) + x(j+1) + b(j))

° Weighted Jacobi uses:

x(j) := 1/3 (x(j-1) + x(j) + x(j+1) + b(j))

° In 2D, similar average of nearest neighbors

Weighted Jacobi chosen to damp high frequency error

Initial error
�Rough�
Lots of high frequency components
Norm = 1.65

Error after 1 Jacobi step
�Smoother�
Less high frequency component
Norm = 1.055

Error after 2 Jacobi steps
�Smooth�
Little high frequency component
Norm = .9176,

won�t decrease much more

Multigrid as Divide and Conquer Algorithm

° Each level in a V-Cycle reduces the error in one part
of the frequency domain

The Restriction Operator R(i) - Details

° The restriction operator, R(i), takes
� a problem P(i) with RHS b(i) and

� maps it to a coarser problem P(i-1) with RHS b(i-1)

° In 1D, average values of neighbors
� xcoarse(i) = 1/4 * xfine(i-1) + 1/2 * xfine(i) + 1/4 * xfine(i+1)

° In 2D, average with all 8 neighbors (N,S,E,W,NE,NW,SE,SW)

Interpolation Operator
° The interpolation operator In(i-1), takes a function on a coarse

grid P(i-1) , and produces a function on a fine grid P(i)

° In 1D, linearly interpolate nearest coarse neighbors
� xfine(i) = xcoarse(i) if the fine grid point i is also a coarse one, else

� xfine(i) = 1/2 * xcoarse(left of i) + 1/2 * xcoarse(right of i)

° In 2D, interpolation requires averaging with 2 or 4 nearest
neighbors (NW,SW,NE,SE)

Convergence Picture of Multigrid in 1D

Convergence Picture of Multigrid in 2D

Equilibrium Simulation Results

5 x 5 x 51

9 x 9 x 9 2

17 x17 x 173

33 x 33 x 334

65 x 65 x 655

129x129 x129Grid level 6

Grid pointsPN diode

0.069E-060.206E-060.601E-06
Depletion
Width (m)

1.00E+241.00E+231.00E+22Nd (m^-3)

1.00E+241.00E+231.00E+22Na (m^-3)

Uniform grid organization on six levels (top panel). Comparison of depletion widths
for different doping (bottom panel).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-6

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

7 Si PN DIODE ELECTRIC FIELD PROFILE

Device length (m)

E
le

ct
ric

 f
ie

ld
 (

V
/m

)

Na=Nd=1e22 m-3

Na=Nd=1e23 m-3

Na=Nd=1e24 m-3

-3.7866E7-1.1186E7-3.269E6
Electric
field(V/m)

1.00E+241.00E+231.00E+22Nd(m^-3)

1.00E+241.00E+231.00E+22Na(m^-3)

