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Objective: The objective of this exercise is to start with the simple Kronig-Penney model 
and understand formations of bands and gaps in the dispersion relation that describes the 
motion of carriers in 1D periodic potentials. The second exercise examines the behavior 
of the bands at the Brillouin zone boundaries. Finally, a simplified tight-binding approach 
for 1D lattice has to be derived as part of the third exercise.. 
 

1. Electrons in a lattice see a periodic potential due to the presence of the atoms, which 
is of the form shown below: 
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This periodic potential will open gaps in the dispersion relation, i.e. it will impose 
limits on the allowed particle energies.  To simplify the problem, one can assume that 
the width of the potential energy term goes to zero, i.e. the periodic potential can be 
represented as an infinite series of -function potentials: 
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(a) Using Bloch theorem for the general form of the solution of the 1D TISE (time-
independent Schrödinger equation) in the presence of periodic potential, show 

that the relationship between the crystal momentum and particle energy is ob-
tained by solving the following implicit equation 

 cos( )
sin( )

cos( )ka P
k a

k a
k a 0

0
0  ,  (1.1) 

where k is the crystal momentum and mkE 22
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in (1.1) may be regarded as the "scattering power" of a single potential spike. 



(b) Plot the dispersion relation for a particle in a periodic potential for the case when 
P=2.5 . 

2. In the free-electron approximation, the total energy of the electrons is assumed to be 
always large compared to the periodic potential energy. Writing the 1D time-
independent Schrödinger wave equation in the form 
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2  and 2/)(2)( xmVxf  , it is rather straightforward to show 

that  in the limit 0  and away from the band edge points ( an / ), one can ap-
proximate the wavefunction )(x  with 
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(a) Show that the result given in (2.2) is a valid approximation for )(x  in the limit 
0  and away from the band-edge points. 

(b) Find the relationship between the expansion coefficients nb  and the Fourier ex-

pansion coefficients for the periodic potential )(xV  for this case. Also, obtain an 
analytic expression for the dispersion relation (the relationship between the al-
lowed particle energies and the crystal momentum k) for values of the crystal 
momentum away from the band-edge points. 

(c) How will the results from parts (a-c) change if the crystal momentum approaches 
the band edge points ankn / ?  What is the appropriate approximate expres-

sion for the wavefunction in this case?  Evaluate the dispersion relation in the vi-
cinity of the band edge points and discuss the overall energy-wavevector disper-
sion relation in the free-electron approximation. 

3. In the free-electron approximation, discussed in problem 2, it was assumed that the 
potential energy of the electron is small compared to its total energy. The atoms are 
assumed to be very close to each other, so that there is significant overlap between the 
wavefunctions for the electrons associated with neighboring atoms. This leads to wide 
energy bands and very narrow energy gaps.  The tight-binding approximation pro-
ceeds from the opposite limit, i.e. it assumes that the potential energy of the electron 
accounts for nearly all of the total energy. The atoms are assumed to be very far apart 
so that the wavefunctions for the electrons associated with neighboring atoms overlap 
only to a small extent. A brief description of the tight-binding method is given below: 

If the potential function associated with an isolated atom is )(0 rV , then the solu-

tion of the Schrödinger equation 



 )()()(
2

)(�
0000

2
2

00 rrrr 











 EV

m
H

 , (3.1) 

describes the electronic wavefunctions of the atom.  If the ground-state wavefunction 
is not much affected by the presence of the neighboring atoms, then the crystal wave-
function is given by: 
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and the periodic potential is represented as  
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where rn is a vector from some reference point in space to a particular lattice site.  
Now, if we express the potential energy term in the total Hamiltonian of the system as 
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it is rather straightforward to show that the expectation value of the energy of the sys-
tem is given by 
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where N is the number of atoms in the crystal. 

(a) Complete the derivation that leads to the result given in (3.5). 
(b) If we assume that the atomic wavefunctions are spherically symmetric (s-type), 

show that in the case then the nearest-neighbor interaction are only taken into ac-
count, the energy of the system for simple cubic lattice is of the form 
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Identify the meaning of the terms  and  in the result given in (3.6).  What is the 
approximate form of the dispersion relation for an electron moving in the x-
direction with momentum akx / .  

(c) Find the dispersion relation for an s-band in the tight-binding approximation for a 
body-centered and face-centered cubic crystal in the tight-binding approximation, 
considering overlap of nearest-neighbor wavefunctions only. 

(d) Plot the form of the forms of the constant energy surfaces for several energies 
within the zone. Show that these surfaces are spherical for energies near the bot-
tom of the band.  

(e) Show that Ekn  vanishes on the zone boundaries. 

 
 


