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Kinetic Transport

 We use N particles, which are a representation of the total 
particles in our region of interest

 This provides a phase space of 6N dimensions

 A phase space distribution function has these 6N variables

 Our �normal� Boltzmann distribution has only 6 variables (plus 
time)

 The configuration of N particles in 6 variable space gives us a 
1-particle distribution (probability) in configuration space

 The projection from a 6N distribution in phase space to a 
single particle distribution in configuration space is a difficult 
problem in statistical physics (e.g., BBGKY heirarchy), and 
uncoupling the projections requires assumptions.



Equilibrium and Nonequilibrium Kinetic Transport

 (Near) Equilibrium transport: almost no change in the one 
particle distribution, or in the correlation functions

 Non-equilibrium transport: significant changes in the one 
particle distribution function�the system is no longer 
stationary, and the Einstein relation is violated�. In particular, 
the �ergodic theorem� is no longer correct (time averages are 
no longer equivalent to ensemble averages; only the latter are 
correct).



Monte Carlo Method 
Described

1. Some General 
Considerations



There are basically two types of Monte Carlo simulations:

 Statistical systems in which an energy 
functional is minimized (simulated 
annealing, etc.)

 Kinetic transport in which particle flow is 
studied (von Neumann neutron transport 
in �45, Kurosawa electron transport �65,�)

This is the approach we use in 
device modeling and carrier 
transport in semiconductors.

It is related to the mathematical 
use of Monte Carlo to integrate a 
function.



BTE Solution

� The Monte Carlo method is a stochastic method for solving the 
Boltzmann Transport equation.
� Semiclassical particle motion is assumed to be decomposed 

into:

� free flights (subject to external forces)

� Instantaneous, memory-less, scattering events
(Elastic, inelastic, intercarrier, electron-photon, etc.)

References:
1) C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, no. 3, pp. 645-705, 1983
2) C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor   

Device Simulation, 1990
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Particle Trajectories in Phase Space

Particle trajectories in k-space and real space
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Monte Carlo Integration
(M. H. Kalas and P. A. Whitlock, �Monte Carlo Methods,� John 

Wiley, 1986)
Suppose we want to integrate: BxAexg Lx


 0

2)/()(
Monte Carlo Algorithm:

� Define ceiling function 

� Generate pairs of random 
numbers:
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times area AB is integral
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Monte Carlo Algorithm
Typical algorithm for accomplishing this goal is:

acceptnum=0
do 10 i=1,nsampltot

xval=rand( )*Bmax
yval=rand( )*Amax
gy=Amas*exp(-(xval/Lg)**2)
if (gy.gt.yval) acceptnum=acceptnum+1

10     continue
area=Amax*Bmax*acceptnum/nsampltot

Here rand( ) is a generic call to a random number generator 
(either intrinsic or subroutine).  Ideally it produces a uniformly 
distributed random number between 0 and 1



Monte Carlo Integration of a Function

Consider the integral
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Various weightings can be used (preferentially choose xi in regions 
where F is large) to improve the estimate of g.



Direct Technique
� If P(r) is a uniform distribution between 0 and 1 then:

where xr is a random number sampled from f(x). xr is found by 
inverting this integration.  

� Example, for constant f(x) is given below: 

      
b

a

x

a

r
dxxfdxxfFrPrdr

r

/
0

     abraxorabaxr rr  /



Rejection Technique
� For most cases of interest, the integral cannot be easily 

inverted.  As in the case of Monte Carlo integration, a rejection
technique may be employed.  
� Choose a maximum value C, such that C > f(x) for all x in the 

interval (a,b).  
� As in the case of Monte Carlo integration, pairs of random 

numbers are chosen, one between a and b 

and another between 0 and C :

� If

the number x1 is accepted as
a suitable sample, otherwise it
is rejected. 
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Combined Technique
� If the probability function is singular in nature, the simple 

rejection technique with a constant ceiling function may be 
inefficient.  If a ceiling function may be defined such that 

over the range of interest, and random numbers may be sample 
from g using the direct technique, then a combined technique 
may be used, where if:

the random number x1 is 
accepted.
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Averages of important parameters are evaluated 
periodically by ensemble averages:

This average may be position dependent:

The ensemble average evolves with time, and is the 
parametrically described distribution function.
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Example: Velocity of Hot Carriers in GaN
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The Monte Carlo simulation:

The weightings of initial distributions, and scattering 
processes  assures that the ensemble evolves according to 
a master equation with collisionsthe scattering 
probabilities provide the correct weightings for the collision 
integrals.

On the short-time basis, the proper equation is the 
Prigogine-Resibois equation (not the Boltzmann equation), 
but on the long-time limit, this evolves into the Boltzmann 
equation.



Monte Carlo Method 
Described

2. Generation of the 
random flight time



 The probability of an electron scattering in a small time interval dt is (k)dt, where (k) is 
the total transition rate per unit time.  Time dependence originates from the change in k(t) 
during acceleration by external forces

where v is the velocity of the particle.

 The probability that an electron has not scattered after scattering at t = 0 is:

 It is this (unnormalized) probability that we utilize as a non-uniform distribution of free 
flight times over a semi-infinite interval 0 to .  We want to sample random flight times 
from this non-uniform distribution using uniformly distributed random numbers over the 
interval 0 to 1, corresponding to typical numerical random number generators. 
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Generation of Random Flight Times



Generation of Random Flight Times

Hence, we choose a random number 
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Ith particle first random number

We have a problem with this integral!

We solve this by introducing a new, fictitious scattering process which 
does not change energy or momentum:
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Generation of Random Flight Times

  




t
ttd

i er 0
1,

k



i
i kk )()( The sum runs over all the real scattering 
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Self-Scattering
� The use of the full integral form of the free-flight probability 

density function is tedious (unless k is invariant during the 
free flight).

� The introduction of self-scattering (Rees, J. Phys. Chem. 
Solids 30, 643, 1969) simplifies the procedure considerably.

� The properties of the self-scattering mechanism are that it 
does not change either the energy or the momentum of the 
particle.

� The self-scattering rate adjusts itself in time so that the total 
scattering rate is constant. Under these circumstances, one 
has that:
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Self-Scattering (cont�d)
� Random flight times tr may be generated from P(t) above using 

the direct method to get:

where r is a uniform random between 0 and 1 (and therefore r 
and 1-r are the same).   

�  must be chosen (a priori) such that > (k(t)) during the entire 
flight. 

� Choosing a new tr after every collision generates a random walk 
in k-space over which statistics concerning the occupancy of the 
various states k are collected.  
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Monte Carlo Method 
Described

3. Free-Flight Scatter 
Sequence



An ensemble Monte Carlo approach is used by considering N particles 
simultaneously

 = collisions
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However, we need a 
second time scale, 
which provides the 
times at which the 
ensemble is 
�stopped� and 
averages are 
computed.

Particle time 
scale



An ensemble Monte Carlo approach is used by considering N particles 
simultaneously, and introducing a time step, t, at which the motion of all the 
particles is synchronized
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Observer time 
scale

In this approach, we will 
always reference ti to the 
current time ts.



Initialize all the parameters
Set the initial distribution ts = 0

Select ti for 
each particle

Observer time scale

Particle time scale

Is ti < t ?
yesAccelerate 

and drift 
for ti

Scatter

Choose new ti

Will this ti push 
us beyond t?

no

no

ts = ts + t
reduce ti
compute averages

ts > tf

no

STOP

yes

Accelerate 
and drift up 

to t

yes
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There are now 2 possibilities!



1 ith particle time line

st tts it it
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This keeps ti referenced to the current time ts.



2 ith particle time line

st tts it
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We update the 
reference time

All the ti extend past t

We now have to 
change the 
reference point for 
the ti
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If our time has not 
yet finished, we can 
now return to the 
start of the scattering 
selection loop, 
examining the next 
increment of the 
reference time.
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Before Returning to the Scattering Selection Loop
Compute the Averages
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Monte Carlo Method 
Described

4. Choice of the scattering 
terminating free-flight



Choice of Scattering Event Terminating Free Flight

 At the end of the free flight ti, the type of scattering which ends the flight 
(either real or self-scattering) must be chosen according to the relative 
probabilities for each mechanism. 

 Assume that the total scattering rate for each scattering mechanism is a 
function only of the energy, E, of the particle at the end of the free flight

 where the rates due to the real scattering mechanisms are typically stored in 
a lookup table. 

 A histogram is formed of the scattering rates, and a random number r is 
used as a pointer to select the right mechanism. This is schematically shown 
on the next slide.
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We can make a table of the scattering processes at 
the energy of the particle at the scattering time:
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21 
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Self

54321 
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Selection process 
for scattering

0r



21 3
0
E
E2
E3




E4

Look-up table of scattering rates:

Store the total 
scattering rates 
in a table for a 
grid in energy
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Once we have selected a scattering process, we must now find 
the final state of the carrier, after the scattering event:

 Final state energy E is determined through conservation of energy.

 Azimuthal angle  of k relative to k  selected randomly between 0 and 2. 

 Polar angle  is selected 
 according to the angular 

dependence of the 
scattering cross-section
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Consider phonon emission

k

E

0E

k

minimum q

kkq min

maximum q

kkq max

If the scattering is isotropic, any state 
on the final energy shell is equally 
likely, and  is chosen randomly 
between 0 and .



Coulomb Scattering is Anisotropic
(Polar LO phonons, impurities, carrier-carrier�)
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This assumes parabolic bands.  For non-parabolic bands (hyperbolic 
bands), we make the replacement:

 gapExExExE /)(21)()( 



We may find  by two methods: (1) a rejection technique, or (2) direct integration.
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Below is an example given for the choice of the polar angle for 
POP scattering:



Rejection Technique

We choose two new random numbers r1 and r2.

0

max

 

1r

max2r

If (r1) > r2max, we accept the process with  = r1,
otherwise we reject this angle and choose 2 new 
random numbers and try again.



Direct Integration for Inelastic Processes
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Monte Carlo Method 
Described

5. Representative Monte 
Carlo Results



Transient simulation results for Si
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kV/cm, respectively.



Steady-state simulation results for Si bulk
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Mean drift velocity characteristics with respect to applied electric field.  Also shown 
in this figure are the simulation results by Yamada et al. [1] and Canali [2] 
experimental data.

[1] T. Yamada, J.-R. Zhou, H. Miyata and D. K. Ferry, Phys. Rev. B, Vol. 49, 1875 (1994).
[2] C. Canali, G. Ottaviani, and A. Alberigi-Quaranta, J. Phys. Chem. Solids, Vol. 32, 1707 
(1971). 
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Described

6. Code Details Description 
and Sample Simulation 
Results for GaAs



parameters initialization
readin()

scattering table construction
sc_table()

histograms calculation
histograms()

Free-Flight-Scatter
free_flight_scatter()

histograms calculation
histograms()

write data
write()

?

carriers initialization
init()

t t t   Time t exceeds maximum 
simulation time tmax

yes

no

Optional

dte=dtau

dte ≥ t?

no yes

dt2 = dte dt2 = t

Call drift(dt2)

dte ≥ t?
yes

dte2 = dte

Call scatter_carrier()

Generate free-flight dt3

dtp=t-dte2

dt3 ≤ dtp?

no yes

dt2 = dtp dt2 = dt3

Call drift(dt2)

dte2=dte2+dt3
dte=dte2

no

yes
dte < t ?

dte=dte-t

dtau=dte

General
Code Flowchart

Free-Flight
Scatter Routine



dte=dtau

dte ≥ t?

no yes

dt2 = dte dt2 = t

Call drift(dt2)

dte ≥ t?
yes

dte2 = dte

Call scatter_carrier()

Generate free-flight dt3

dtp=t-dte2

dt3 ≤ dtp?

no yes

dt2 = dtp dt2 = dt3

Call drift(dt2)

dte2=dte2+dt3
dte=dte2

no

yes
dte < t ?

dte=dte-t

dtau=dte

dte2

dtp

dte2 dt3

dte2 dt3

AA
B

A

B

dte2



k-vector

-valley

X-valley [100]

L-valley [111]

Conduction bands

Valence bands

Model Bandstructure for GaAs



-valley table
-Mechanism1
-Mechanism2
- �
-MechanismN

L-valley table
-Mechanism1
-Mechanism2
- �
-MechanismNL

X-valley table
-Mechanism1
-Mechanism2
- �
-MechanismNx

Define scattering mechanisms for each valley

Call specified 
scattering mechanisms subroutines

Renormalize scattering tables

Scattering Tables Creation
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with the subroutine init()

Initial carrier wavevector and energy

e = -(1.5*Vt)*log(ran(iso))
k=smh*sqrt(e*(1.+af*e))
fai=two_pi*ran(iso)
ct=1.-2.*ran(iso)
st=sqrt(1.-ct*ct)
kx=k*st*cos(fai)
ky=k*st*sin(fai)
kz=k*ct



1. Isotropic scattering processes
c o s 1 2 ,   2r r    

2. Anisotropic scattering processes (Coulomb, POP)

kx

ky

kz

k
0

0

Step 1:
Determine 0 and 0

kx�

ky�

kz�

k

Step 2:
Assume 
rotated
coordinate
system

Step 3:
perform scattering
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Step 4:
kxp = k�sin cos, kyp = k�sin*sin, kzp = k�cos

Return back to the original coordinate system:
kx = kxpcos0cos0-kypsin0+kzpcos0sin0
ky = kxpsin0cos0+kypcos0+kzpsin0sin0
kz = -kxpsin0+kzpcos0

k�≠k for
inelastic
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Monte Carlo Method 
Described

7. Higher-order effects



Inclusion of the Pauli Exclusion Principle

 The influence of the final state on the scattering rate is important at low 
temperatures and high carrier densities.  

 This effect may be included via a self-scattering rejection method (Bosi and 
Jacoboni, J. Phys. C9, 315 (1976); Lugli and Ferry, IEEE Trans. Elec. Dev. 32, 
2431 (1985)).  

 The electron (hole) distribution function f(kx,ky,kz) is updated in k-space (on a 
2D or a 3D grid).  

 Once the final state has been selected, a new random number is generated:
 If                          , then self-scattering is assumed to occur with no 

change of momentum or energy
 If                        , then accept the scattering event

)(k0 fr 

1k  rf )(
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Two-Dimensional System Example
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Some important notes:

- The size of the grid in k-
space determines how 
many electrons may 
occupy the grid.

- The accuracy improves as 
the number of particles 
increases.

xk

yk

L/2

L/2

Simulation size:

cell 
size

Upon scattering, we increase or 
decrease the population in the 
cell, and the latter gives f(k)



Number of states that can be occupied
Within one cell is:  

2
2 /

x yk k

L

 

Non-degenerate statistics

NS = 4.751013 cm-2

Eeff = 1.04106 V/cm

Maximum number of states per cell = 40Maximum number of states per cell = 40

Degenerate statistics

NS = 2.711013 cm-2

Eeff = 3.01106 V/cm
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Carrier-Carrier Scattering
For two-particle interactions, the electron-electron (hole-hole, electron-hole) 
scattering rate may be treated as a screened Coulomb interaction (impurity 
scattering in a relative coordinate system).  The total scattering rate depends on 
the instantaneous distribution function, and is of the form:
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screening constant

There are three methods commonly used for the treatment of the electron-
electron interaction:

A. Method due to Lugli and Ferry
B. Rejection algorithm
C. Real-space molecular dynamics

All are complicated!



Method due to Lugli and Ferry
� This method starts form the assumption that the sum over the 

distribution function is simply an ensemble average of a given 
quantity.

� In other words, the scattering rate is defined to be of the form:

� The advantages of this method are:

1. The scattering rate does not require any assumption on the form of the 
distribution function

2. The method is not limited to steady-state situations, but it is also 
applicable for transient phenomena, such as femtosecond laser excitations

� The main limitation of the method is the computational cost, 
since it involves 3D sums over all carriers and the rate 
depends on k rather on its magnitude.
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Rejection Algorithm
Within this algorithm, a self-scattering mechanism, internal to 
the interparticle scattering is introduced by the following 
substitution:

� When carrier-carrier collision is selected, a counterpart 
electron is chosen at random from the ensemble. 

� Internal rejection is performed by comparing the random 
number with:
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Rejection Algorithm (cont�d)
� If the collision is accepted, then the final state is calculated

using:

where:

The azimuthal angle is then taken at random between 0 and 
2.

� The final states of the two particles are then calculated using:
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Real-Space Molecular 
Dynamics

� An alternative to the previously described methods is 
the real-space treatment proposed by Jacoboni.

� According to this method, at the observation time 
instant ti=it, the total force on the electron equals 
the sum of the interparticle coulomb interaction 
between a particular electron and the other (N-1) 
electrons in the ensemble.



Real-Space Molecular 
Dynamics

� When implementing this method, several things 
need to be taken into account:
1. The fact that N electrons are used to represent a 

carrier density n = N/V means that a simulation 
volume equals V = N/n.

2. Periodic boundary conditions are imposed on this 
volume, and because of that, care must be taken 
that the simulated volume and the number of 
particles are sufficiently large that artificial 
application from periodic replication of this 
volume do not appear in the calculation results.



Real-Space Molecular Dynamics
� Using Newtonian kinematics, the real-space trajectories of 

each particle are represented as:

and:

Here, F(t) is the force arising from the applied field as well as 
that of the Coulomb interaction:

� The contributions due to the periodic replication of the 
particles inside V in cells outside is represented with the 
Ewald sum:
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simulated
particles
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The remaining particles are �replicas�

The actual force 
calculation must be 
done on a centered 
box, to avoid artificial 
drift forces.

So, this requires two 
boxes in practice: (1) 
the real box, and (2) a 
box around each 
particle.
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This can be made to be quite 
small, if enough particles are 
used.

This becomes even more exact 
when only the short-range part is 
kept (discussed later).



Role of an improved treatment of impurity scattering using MD 
approach in GaAs: only with this correct method can the mobility 
be made to match the data over two orders of magnitude in heavy 
doping.

Here, the impurities were put in randomly in the sample to simulate real 
doping.  Each electron is, on average, interacting with three impurities at 
any one time!



Simulation Example
� The effect of the e-e scattering 

allows equilibrium distribution 
function to approach Fermi-Dirac 
or Maxwell Boltzmann distribution. 

� Without e-e, there is a phonon 
�kink� due to the finite energy of the 
phonon


