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Kinetic Transport

We use N particles, which are a representation of the total
particles in our region of interest

This provides a phase space of 6N dimensions

€ A phase space distribution function has these 6N variables

€ Our “normal” Boltzmann distribution has only 6 variables (plus

time)

The configuration of N particles in 6 variable space gives us a
1-particle distribution (probability) in configuration space

The projection from a 6N distribution in phase spaceto a
single particle distribution in configuration space is a difficult
problem in statistical physics (e.g., BBGKY heirarchy), and
uncoupling the projections requires assumptions.



Equilibrium and Nonequilibrium Kinetic Transport

» (Near) Equilibrium transport: almost no change in the one
particle distribution, or in the correlation functions

» Non-equilibrium transport: significant changes in the one
particle distribution function—the system is no longer
stationary, and the Einstein relation is violated.... In particular,
the “ergodic theorem” is no longer correct (time averages are
no longer equivalent to ensemble averages; only the latter are
correct).



Monte Carlo Method
Described

1. Some General
Considerations



There are basically two types of Monte Carlo simulations:

+ Statistical systems in which an energy
functional is minimized (simulated
annealing, etc.)

* Kinetic transport in which particle flow is
studied (von Neumann neutron transport
in ‘45, Kurosawa electron transport ‘65,...)

This is the approach we use in
device modeling and carrier
transport in semiconductors.

It is related to the mathematical
use of Monte Carlo to integrate a
function.



BTE Solution

 The Monte Carlo method is a stochastic method for solving the
Boltzmann Transport equation.

« Semiclassical particle motion is assumed to be decomposed
Into:

— free flights (subject to external forces)
k(t)=k(0)—e(vxB+E)t/#

— Instantaneous, memory-less, scattering events
(Elastic, inelastic, intercarrier, electron-photon, etc.)

References:

1) C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, no. 3, pp. 645-705, 1983

2) C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor
Device Simulation, 1990



Particle Trajectories in Phase Space
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Particle trajectories in k-space and real space




Monte Carlo Integration

(M. H. Kalas and P. A. Whitlock, “Monte Carlo Methods,” John
Wiley, 1986) 2
Suppose we want to integrate: g(x) = Ae ' 0< x <B

Monte Carlo Algorithm:

 Define ceiling function
g(x)=A

» Generate pairs of random
numbers: 1,1}

If Ar,>g(Br/) reject
If Ar, <g(Bry;) accept

 Ratio of accepted to total
times area AB is integral




Monte Carlo Algorithm

Typical algorithm for accomplishing this goal is:

acceptnum=0
do 10 i=1,nsampltot
xval=rand( )*Bmax
yval=rand( )*Amax
gy=Amas*exp(-(xval/Lg)**2)
If (gy.gt.yval) acceptnum=acceptnum+1
10 continue
area=Amax*Bmax*acceptnum/nsampltot

Here rand( ) is a generic call to a random number generator
(either intrinsic or subroutine). ldeally it produces a uniformly
distributed random number between 0 and 1



Monte Carlo Integration of a Function

Consider the integral

g= T F(X)dx

A Monte Carlo approach uses random numbers, say 10 chosen in the
interval

x. < |a,b]—> x =a+r, (b—a)
I C [O,l]

Then
1 20
~(b-a)— > F(x
g=( )102;, (%)

Various weightings can be used (preferentially choose x; in regions
where Fis large) to improve the estimate of g.



Direct Technique

* If P(r) is a uniform distribution between 0 and 1 then:
r X, b
r=[dr'P(r')=F = [f(x)dx/[f(x)dx
0 a a

where X, is a random number sampled from f(x). x, is found by
Inverting this integration.
« Example, for constant f(x) is given below:

r=(x, —a)/(lb—a) or x =a+r(b-a)



Rejection Technigque

« For most cases of interest, the integral cannot be easily
Inverted. As in the case of Monte Carlo integration, a rejection

technigue may be employed.

* Choose a maximum value C, such that C > f(x) for all x in the
Interval (a,b).

« As in the case of Monte Carlo integration, pairs of random
numbers are chosen, one between a and b

x,=a+r(b-a)

C
and another between 0 and C : f ox, NS
fl — r1C r2:C
° |f r,-C
the number x, is accepted as x|
a suitable sample, otherwise it 0

IS rejected. 7




Combined Technique

« |f the probability function is singular in nature, the simple
rejection technigue with a constant ceiling function may be
iInefficient. If a ceiling function may be defined such that

Kg(x) = f(x)
over the range of interest, and random numbers may be sample

from g using the direct technique, then a combined technique
may be used, where If; c <

f(x,)
rKg (%)) < f(xy) |
r, Kg(x,)

the random number x, Is K (x)
accepted.

r Kg{x,)

f(x1)§>>/

0

a X




Averages of important parameters are evaluated
periodically by ensemble averages:

(A= A

ICN

This average may be position dependent:

(A0) =5 A

IcR(X)

The ensemble average evolves with time, and is the
parametrically described distribution function.



Example: Velocity of Hot Carriers in GaN
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The Monte Carlo simulation:

The weightings of initial distributions, and scattering
processes assures that the ensemble evolves according to
a master equation with collisions—the scattering

probabilities provide the correct weightings for the collision
integrals.

On the short-time basis, the proper equation is the
Prigogine-Resibois equation (not the Boltzmann equation),

but on the long-time limit, this evolves into the Boltzmann
equation.



Monte Carlo Method
Described

2. Generation of the
random flight time



Generation of Random Flight Times

% The probability of an electron scattering in a small time interval dt is I'(k)dt, where I'(k) is
the total transition rate per unit time. Time dependence originates from the change in Kk(t)

during acceleration by external forces
k(t)=k(0)-e(E+VvxB)t/n
where v is the velocity of the particle.

* The probability that an electron has not scattered after scattering att = 0 is:
t

~[dtT(k(t))
Pt =e?

s Itis this (unnormalized) probability that we utilize as a non-uniform distribution of free

flight times over a semi-infinite interval O to «o. We want to sample random flight times
from this non-uniform distribution using uniformly distributed random numbers over the
interval 0 to 1, corresponding to typical numerical random number generators.



Generation of Random Flight Times

Hence, we choose a random number

t

~[dtT(k(t))
I ,1:\90
/ first random number

We have a problem with this integral!

Ith particle

We solve this by introducing a new, fictitious scattering process which
does not change energy or momentum:

Fs(k) =T's(E)o (X' =x)o(k"=k)



Generation of Random Flight Times

processes. To this we add the fictitious
self-scattering which is chosen to have a
nice property:

Fnew — FO

k)= Zri (k) The sum runs over all the real scattering
i

Fe(=To~ YT (K

scatterers



Self-Scattering

* The use of the full integral form of the free-flight probability
density function is tedious (unless k is invariant during the
free flight).

* The introduction of self-scattering (Rees, J. Phys. Chem.
Solids 30, 643, 1969) simplifies the procedure considerably.

* The properties of the self-scattering mechanism are that it
does not change either the energy or the momentum of the
particle.

* The self-scattering rate adjusts itself in time so that the total
scattering rate is constant. Under these circumstances, one
has that:

_fdtT
[ = T(Kk(t))+ Ty (k(t)  P(t)dt=Te * dt = Fe "t



Self-Scattering (cont’d)

« Random flight times t, may be generated from P(t) above using

the direct method to get:

_ 1 1
I't
r=e " t =——In(l-r)=—=In(r
== CIn@-r)=-ZIn()
where r is a uniform random between 0 and 1 (and therefore r
and 1-r are the same).

* I' must be chosen (a priori) such that I'> I'(k(t)) during the entire
flight.

» Choosing a new t, after every collision generates a random walk
In k-space over which statistics concerning the occupancy of the
various states k are collected.



Monte Carlo Method
Described

3. Free-Flight Scatter
Sequence



An ensemble Monte Carlo approach is used by considering N particles
simultaneously

Particle time

However, we need a
scale

second time scale,
which provides the
times at which the
ensemble is
“stopped” and
averages are
computed.
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An ensemble Monte Carlo approach is used by considering N particles
simultaneously, and introducing a time step, At, at which the motion of all the
particles is synchronized

n=1
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In this approach, we will
always reference t; to the
current time t..



Initialize all the parameters
Set the initial distribution

— Observer time scale

Select t; for Particle time scale
each particle

Accelerate

and drift
/ for t,
A yes
Scatter no Q> t;
STOP

no

A4
Accelerate —
Choose new t, no and drift up J I =1t At
{0 At reduce t
compute averages

Will this t. push
us beyond At?

yes



l > | ith particle time line

| t |

ts : ts + At
k(ts+t) =k(ts)—(eE/ Ak,
Update position, energy

Scatter — Kk'(tg +t;)
E(k’)

!
Choose a new ti

There are now 2 possibilities!



>

t 7 ith particle time line
ts T tg T At §

K (ts +At) =K (ts +t) — (€E /A )(At —t;)

Update position, energy

new ti :ti,Old +ti'

This keeps t; referenced to the current time t..



| ith particle time line

K (tg + At) =K (tg + ;)

Update position, energy
new ti Zti old -I-ti’

Return to Scatter process, which picks new

Scatter — k'(tg +t;)
E(k’)



All the t, extend past At

1

We update the

/ reference time

A tg=tg+ At

We now have to
change the

reference point for

o O1Th WN

the t

ti Zti —At
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If our time has not
yet finished, we can
now return to the
start of the scattering
selection loop,
examining the next
increment of the
reference time.



Before Returning to the Scattering Selection Loop
Compute the Averages

N N k; (ts)
Vd (tS) — N;l n‘lc(]_—|— 2E| (ts)/ Egap)
avg Z . (tS)

Eavg = Z E (ts)
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4. Choice of the scattering
terminating free-flight



Choice of Scattering Event Terminating Free Flight

At the end of the free flight t, the type of scattering which ends the flight
(either real or self-scattering) must be chosen according to the relative
probabilities for each mechanism.

Assume that the total scattering rate for each scattering mechanism is a
function only of the energy, E, of the particle at the end of the free flight

I =T (E)+G(E)+ T (E)+ T (E) + ...

where the rates due to the real scattering mechanisms are typically stored in
a lookup table.

A histogram is formed of the scattering rates, and a random number rT" is
used as a pointer to select the right mechanism. This is schematically shown

on the next slide.



We can make a table of the scattering processes at
the energy of the particle at the scattering time:

Self
5 [+, +1+1, + 1
4 I+, +15+1,
‘ol 3 [TinorL o
2 [+, for scattenng

(E( )

—_




Look-up table of scattering rates:

Store the total RN
scattering rates | R MR N
ma table for & o A
1
1
1
1

e
ane SRR NGRS
b
2ae B

i

l-ll-lll-llllllllll-

1 FZ 3 .........




Once we have selected a scattering process, we must now find

A\

the final state of the carrier, after the scattering event:

Final state energy E' is determined through conservation of energy.

Azimuthal angle ¢ of k relative to k " selected randomly between 0 and 2.

Polar angle @is selected k
» according to the angular A ?
dependence of the

scattering cross-section




Consider phonon emission

minimum q

Omin = k-K

maximum q

Opax = K+ K’

If the scattering is isotropic, any state
on the final energy shell is equally
likely, and @ is chosen randomly
between 0 and .



Coulomb Scattering is Anisotropic
(Polar LO phonons, impurities, carrier-carrier...)

1 1
P(9) ~ = =
q°  |k-k’

2

B 2m* |
 E(K) + E(k) - /E(K)E(K) cosg
E(K') = E(K) + iarg

This assumes parabolic bands. For non-parabolic bands (hyperbolic
bands), we make the replacement:

E(X) — E(XQ|L+2E(X)/ Egqp)



Below is an example given for the choice of the polar angle for
POP scattering:

sin(0)do
E +E'— 2J/EE'cos0)

Lpop (O)d@ - (

0 0

We may find @by two methods: (1) a rejection technique, or (2) direct integration.



Rejection Technique

We choose two new random numbers r; and r,.

]

T "0

If T'(ry7) > r,I',. We accept the process with 8=r,7,
otherwise we reject this angle and choose 2 new
random numbers and try again.



Direct Integration for Inelastic Processes

TF ()49 In{ E(k) + E(K") - 2(/E(K)E(K') 0039}
0 _

E(k) + E(K") —2(E(K)E(K)

E(k) + E(K") + 2\ E(K)E(K)
E(k) + E(K") —2(E(K)E(K)

r =

TF(Q’)dQ' In{
0

E(k)+ E(K) - 2JE(K)E(K) cosd| [ E(k)+E(K)+2/EK)EK) |
E(k)+E(K)-2JEKEK) [ |EK)+EK)-2JEK)EK)

(L+&)-(@+28)
S
o 2kk' 2,/E(K)E(K)
== (k—k)2  E(K)+E(K)—-2JEK)E(K

COSY =
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5. Representative Monte
Carlo Results



Drift velocity [cm/s]

Transient simulation results for Si

2.5X107_IIIIIIIIIIIIIII IIIIIIII IIIIIIIIIIIIIII
C A 1 kvicm

2x10° —,' '-‘ -— 5kVicm -

MY ]

1.5x10’ -Ii Y --—— 50 kV/cm A
1x10’
5x10°
0

Time evolution of mean drift velocity.
Electric field is: (a) 1.0 kV/cm, (b) 5.0
kV/cm, (c) 10 kV/cm, and (d) 50 kV/cm,
respectively.

Energy [eV]

Time evolution of the average
electron kinetic energy. The electric
field equals: (a) 1 kV/cm, (b) 5
kV/cm, (c) 10 kV/cm, and (d) 50
kV/cm, respectively.

0'25 _I T T 1 I IIIIIIII I T T T 1T I IIIIIIII I T T 11 I LI I_
02 — o p—— Y e bhasa B TR PR b TR LT
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01 [H --—— 50 kv/icm
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Steady-state simulation results for Si bulk

- I I I I Y II I I I I Y I_
= | _
~~ » n
5
[ 7 |- =

10 | m
b B ]
g i 0 i
[ I imulati |
>
‘= 10°F -
A - | ]

1 10 100

Electric field [kV/cm]

Mean drift velocity characteristics with respect to applied electric field. Also shown
in this figure are the simulation results by Yamada et al. [1] and Canali [2]
experimental data.

[1] T. Yamada, J.-R. Zhou, H. Miyata and D. K. Ferry, Phys. Rev. B, Vol. 49, 1875 (1994).
[2] C. Canali, G. Ottaviani, and A. Alberigi-Quaranta, J. Phys. Chem. Solids, Vol. 32, 1707
(1971).
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6. Code Detalls Description
and Sample Simulation
Results for GaAs



parameters initialization

readin() General
I Code Flowchart

scattering table construction
sc_table()

|

carriers initialization
init()

A 4

histograms calculation
histograms()

A 4

Free-Flight-Scatter
free_flight_scatter()

A 4

histograms calculation

histograms() Optional

A 4

write data
write()
t=t+At  no Time t exceeds maximum
simulation time t,,,
yes

Y

dte=dtau

no yes

dt2 =

dte = At?
dte

dt2 = At

L e drift(dt2) )

yes

dte = At?

A

dte2 = dte

'

Call scatter_carrier()

.

Generate free-flight dt3

'

dtp=At-dte2

no yes

dt2 =

\ 4

dt3 < dtp?
dtp

L Jca drift(dt2) ]

dt2 = dt3

'

dte2=dte2+dt3
dte=dte2

yes

dte < At ?

no

\4

dte=dte-At

'

dtau=dte

Free-Flight
Scatter Routine



dte=dtau

no yes

* dte > At? ¥ .

dt2 = dte dt2 = At

L Jcan drift(dt2) |

yes
dte2 = dte |« —» |
'
Call scatter_carrier() >
! dtp
Generate free-flight dt3
'
dtp=At-dte2
no yes B
2 I
* dt3 < dtp? v
dt2 = dtp P dt2 = dt3 dte2 dt3
|—> Call drift(dt2) <—|
. ‘ ‘—»_»
dte2=dte2+dt3
dte=dte2 d t
e2 dt3
yes
dte < At ? BA»#—F

" .

dte?

\4

dte=dte-At

'

dtau=dte




Model Bandstructure for GaAs

Conduction bands

N

L-valley [111]

X-valley [100]

I'-valley

» Kk-vector

Valence bands



Scattering Tables Creation

Define scattering mechanisms for each valley

I'-valley table L-valley table X-valley table

-Mechanism1 -Mechanisml1 -Mechanisml1

-Mechanism?2 -Mechanism?2 -Mechanism?2

-MechanismN -MechanismN, -MechanismN,
Call specified

scattering mechanisms subroutines

1

Renormalize scattering tables




Scattering Rate [1/s]

10

10

10

15

14

10

intervalley gamma to X

polar optical phonons

. /
acoustic e

S intervalley gamma to L

Loty
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Energy [eV]
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Scattering Rate [1/s]

14

10

10

11

Xto X scattering

acoustic

7777777777

Xto L scattering —

—
N—
HQZL
.
——

— |

BT e

- Xto gamma scattering

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Energy [eV]



Arbitrary Units

40

35+

Initial carrier wavevector and energy

Initial Distribution of the
wavevector along the y-axis
that is created with the
subroutine init()

4 -2 0 2
Wavevector ky [1/m]

Arbitrary Units

Initial Energy Distribution created
with the subroutine init()

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Energy [eV]

e = -(1.5*Vt)*log(ran(iso))
k=smh*sqrt(e*(1.+af*e))
fai=two_ pi*ran(iso)
ct=1.-2.*ran(iso)
st=sqrt(1.-ct*ct)
kx=k*st*cos(fai)
ky=k*st*sin(fai)

kz=k*ct



1. Isotropic scattering processes
cosd =1-2r, ¢ =27xr

2. Anisotropic scattering processes (Coulomb, POP)
s+ k

Step 1:
Determine 6, and o,
> ky
: k. k’#k for
Step 2: inelastic
Assume K l
V'S
rotated
coordinate k’
system
> ky’ > k.
K, K,

Step 3:

perform scattering

cocs - (rE)-(@+ 2¢&) e 2 JE,(E  thw,) _ POP

¢ (VE. - VE tha,)
2r
0089:171+4k2L2D(1—r) Coulomb
p=27r for both
Step 4:
kxp = K’sin 6cosy, kyp = K’sin6*sino, kZp = Kk’cosO

Return back to the original coordinate system:

K, = K,,COSp,Cc0s0,-K, sinp,+k, ,cosp,sing,
K, = K,,SiNp,c0s0,+kK, ,cospy+k,,SiNngsinO,
k. =

2 = -K,x,SinB,+k, ,cosO,



Rejection technique for
final angle selection

x 10

Arbitrary Units

0 0.5 1 1.5 2 2.5 3 3.5
Polar angle

A SN
I NN\
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o0

I ‘ \.,\s*wn-‘ﬁ’,ﬁ\w,

X 105

[s/w] A100|9A

x 10"

time [S]



x 10°

1.8

[s/w] AuoojsA U@

X 105

Electric Field [V/m]



Conduction Band Valley Occupancy

10000m

9000

8000

7000

6000

5000

4000

3000

2000

1000

gamma valley occupancy

L valley occupancy | ()

O Xvalley occupancy
O v N
V<oV
| — @ | 7 M | |
VY VY 3 4 5 6
Electric Field [V/m] x 10°




Arbitrary Units

Initial and final wavevector along the field

arbitrary Units

0.5 1 15

0.5 1 15 -2 -1.5 -1 0.5 0
9

wavevector ky [1/m] x 10

-2 -1.5 -1 -0.5 0
wavevector kx [1/m] x 10°

Shift in the distribution due to application
of electric field.



Initial and final carrier energy

700

90

80 Initial Energy Distribution created A 600
with the subroutine init()

500

300

Arbitrary Units
Arbitrary Units

200

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0
Energy [eV]

Energy [eV]

Shift in the distribution due to application
of electric field.
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/. Higher-order effects



Inclusion of the Pauli Exclusion Principle

The influence of the final state on the scattering rate is important at low
temperatures and high carrier densities.

This effect may be included via a self-scattering rejection method (Bosi and
Jacoboni, J. Phys. C9, 315 (1976); Lugli and Ferry, IEEE Trans. Elec. Dev. 32,
2431 (1985)).

The electron (hole) distribution function f(k,,k,,k,) is updated in k-space (on a
2D or a 3D grid).

Once the final state has been selected, a new random number is generated:

R/

<+ If 0O <r <f(k) ,then self-scattering is assumed to occur with no
change of momentum or energy
< If f(k)<r <1,then accept the scattering event



Simulation size:

N

Let :A:LZ\

Ny

Two-Dimensional System Example

The area per state in k-space is

2
cell A, = (an
size L

Upon scattering, we increase or
decrease the population in the
cell, and the latter gives f(k)

Some important notes:

- The size of the grid in k-

space determines how _T_

many electrons may

occupy the grid. Aky
- The accuracy improves as l

the number of particles
Increases.




- N N [+ )
o [=] w (=} (3]

-
(=]

dist. function (arb. units)

AK,AK,
Number of states that can be occupied

Within one cell is: (271_ / L)2

i Maximum number of states per cell = 40
.‘ ““‘;‘"

Al

,"I’/»"k;“%

)

—

- Non-degenerate statistics
Ng = 4.75x10%3 cm

0 o E_. = 1.04x106 V/em
Yoty 400 kx (arb. units) 40 lfﬁ?‘;‘*
1, A
Degenerate statistics - 512 ]/II M“M“\

Ng = 2.71x10%3 cm 5

20 40

ky (arb.units)

kx (arb.units)



Mobility vs. Experimental Data

1000 I I 1 I | I I 1 1
Coulomb scattering

‘N not included in the model
|
> ]
S~
NE i
(&)
— 100 —
> i
= i
% ]
E | —@— Q2DMC - degenerate statistics _
-=-0=-=-0Q2DMC - nond?generate statistics
10 ] 1 1 1 ] 1 ] 1
410° 610° 810°10° 310° \
E [V/icm]
eff

The role of Pauli exclusion
principle (screening not included)



Carrier-Carrier Scattering

For two-particle interactions, the electron-electron (hole-hole, electron-hole)
scattering rate may be treated as a screened Coulomb interaction (impurity
scattering in a relative coordinate system). The total scattering rate depends on
the instantaneous distribution function, and is of the form:

m* e* k —k
Fko)= € 5 (k) 1< Ko
h3\/5
o Kk

/ﬁzﬂk‘kozwz)

screening constant

\

There are three methods commonly used for the treatment of the electron-
electron interaction:

A. Method due to Lugli and Ferry
B. Rejection algorithm
C. Real-space molecular dynamics

All are complicated!



Method due to Lugli and Ferry

» This method starts form the assumption that the sum over the
distribution function is simply an ensemble average of a given
guantity.

* |In other words, the scattering rate is defined to be of the form:
(k) = nmne:lf) L k;ki
Anhel izik — k| +1/L3
 The advantages of this method are:

1. The scattering rate does not require any assumption on the form of the
distribution function

2. The method is not limited to steady-state situations, but it is also
applicable for transient phenomena, such as femtosecond laser excitations

 The main limitation of the method is the computational cost,
since it involves 3D sums over all carriers and the rate
depends on k rather on its magnitude.



Rejection Algorithm

Within this algorithm, a self-scattering mechanism, internal to

the interparticle scattering is introduced by the following
substitution:

K—Ko 1
K—kf+112 2L
0 D D

 When carrier-carrier collision is selected, a counterpart
electron is chosen at random from the ensemble.

* Internal rejection is performed by comparing the random
number with:

k—ko
k—ko* +1/13




Rejection Algorithm (cont’d)
e If t_he collision is accepted, then the final state is calculated
) 2r

, where 0, =angle(g,g'
1+g°(1-r)L3 9ie(9.9)

CosO, =1-

where:

g=k-ko g'=k'-kq

The azimuthal angle is then taken at random between 0 and
2.

* The final states of the two particles are then calculated using:
. 1,
Ko =Kg _2(9 =')

. 1, .
k =ko+2(g—g)



Real-Space Molecular
Dynamics

« An alternative to the previously described methods is
the real-space treatment proposed by Jacoboni.

« According to this method, at the observation time
Instant ti=iAt, the total force on the electron equals
the sum of the interparticle coulomb interaction
between a particular electron and the other (N-1)
electrons in the ensemble.



Real-Space Molecular
Dynamics

« When implementing this method, several things
need to be taken into account:

1. The fact that N electrons are used to represent a
carrier density n = N/V means that a simulation
volume equals V = N/n.

2. Periodic boundary conditions are imposed on this
volume, and because of that, care must be taken
that the simulated volume and the number of
particles are sufficiently large that artificial
application from periodic replication of this
volume do not appear in the calculation results.



Real-Space Molecular Dynamics

Using Newtonian kinematics, the real-space trajectories of
each particle are represented as:

F(t+ At =r(t) + VAL + 1) 2
2m?*

and:
Vit + AL = v() + - At
m*

Here, F(t) is the force arising from the applied field as well as
that of the Coulomb interaction:

F(t) = q[E—izv@(r(t)i )}

The contributions due to the periodic replication of the
particles inside V in cells outside is represented with the
Ewald sum:

F(t)_—Z( a, +32\7/trj

4rte i=1



* ° ® °
) )
° °
) )
) )
q °
° Uy
)
°
)
)
° °
simulated
particles

The remaining particles are “replicas”

The actual force
calculation must be
done on a centered
box, to avoid artificial
drift forces.

So, this requires two
boxes in practice: (1)
the real box, and (2) a
box around each
particle.



1, 1
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1
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This can be made to be quite
small, if enough particles are
used.

This becomes even more exact
when only the short-range part is
kept (discussed later).



Role of an improved treatment of impurity scattering using MD
approach in GaAs: only with this correct method can the mobility
be made to match the data over two orders of magnitude in heavy

doping.
2000&

] 1 1 L L L ll 1 1 1 1L
—— B
_ 16000 k Modified BH |
§ f\ —4& — Molecular Dynamics
> . ©  Experimental data
b 12000 ¢ N -
E AY
S N
-
S 8000 .
m
g o
Rkt W
4000 o O O o ek
0@ o @ ©
1 I 1 1 1 .1 1 l‘ i 1 I L 1 11
1016 1017 1013

CARRIER CONCENTRATION {cm®)

Here, the impurities were put in randomly in the sample to simulate real
doping. Each electron is, on average, interacting with three impurities at
any one time!



Simulation Example

* The effect of the e-e scattering
allows equilibrium distribution
function to approach Fermi-Dirac
or Maxwell Boltzmann distribution.

« Without e-e, there is a phonon
‘kink” due to the finite energy of the
phonon

arb. constant )

|

OCCUPATION NUMBER (
e =

-

0 .01 .02 .03 .04 .05
ENERGY (eV)



