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Drift-Diffusion Approaches
.

e Valid when diffusive transport domlnates
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Extension of DD Aproaches Validity
S

e Introduction of the field-dependent mobility

« Long-channel devices — [D-VD curves nearly constant in
saturation

« Short-channel device — Electric fields become very high
and the drift-velocity becomes constant (mobility
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Velocity Saturation Implications

Current (0.2 mA/div)

Channel length = 0.2 um

Drain voltage (1 V/div)
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Velocity Saturation
.

« A simplified expression is obtained using:

Iy = _fi'Aeﬁm”d: Aeﬁ = Z}f‘eﬁ

/N

..e. the velocity-limited drain current equals to:
Ip = _Q‘Z:-""Fﬂfh‘d -~ @"‘Eﬁ”‘zﬂ"‘d =ZvaCop (Vg = V1)

On
« Comparing the above expression with the mobility-
limited one for a long-channel device, we get:

Wi (Ve —V7)

sar
2L

=P For V/-V=5V
we get L =1.25 um

(Ve = 107 cm/s)



Device Scaling

* B Demmard IEEE IS5C. 1974
Scaled Device SCALING:

Voltage: Vie
e
Voltage, Vi _ 2 wiRING Oxide: tor 1

todor Wire width: Wi

_ Gate width: Lic
GATE Diffusion: XalOt

Substrate: ™ Na

p substrate, doping o*Na



Challenges in Scaled Devices

Threshold voltage:

+ kT/g (subthreshold slope)

+ V-V, decreases

High electric fields:

+ mobility degradation
reliability

L

tunneling

inversion layer

polySi gate depletion,
activation, dopant penetration

Tunneling:
« drain to body
+ source to drain

Dopant profile control;
transient enhanced diffusion
ion implantation
RTA ramp rate limitation

discrete, random dopant
placement




Length Scales Over Which These
Effects Occur

Novel physical phenomena
10UM|  Cassical transport ? Ii P
(collisions, mobility) N[, | e
) T R =¥ ; T <
E : i * \:‘: classical
Velocity overshoot ' "
+ 1D guantum effects E e ; ;¥ | quanium
{._1'_“"" ————————————— ?‘.lllli.u:-lllla:-:-il.- canal ||‘||'|-|I “““““““
race |
Parameter {dopant) ‘LH [+ ] 3.,3
fluctuations
4
s L i e et pea
- $ ._"*'T_%| %
Ballistic transport N+ T N+
+ 2D quantum effects
v T
2004 Adrian M. Iomesca




Modeling Hierarchy
-
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Velocity Overshoot in Bulk Si

Drift velocity [cm/s]
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Time evolution of mean drift velocity.
Electric field is: (a) 1.0 kV/cm, (b) 5.0
kV/cm, (c) 10 kV/cm, and (d) 50 kV/cm,
respectively.

Energy [eV]

Time evolution of the average
electron kinetic energy. The electric
field equals: (a) 1 kV/cm, (b) 5
kV/cm, (c) 10 kV/cm, and (d) 50
kV/cm, respectively.
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Velocity Overshoot
-

« We can describe the motion of the electrons between
collisions by simple Newton’s Law:
av ;.
m* 9 — _gF
dt s
* |n a simplified approach (momentum balance equation for
an average carrier) that neglects diffusion, we have

L AV _4F. - m*v,.
dt * T

m

m

« For a uniform electric field applied at t=0, the solution of
the above equation is of the form:

Fn’r(r) _ qT}{? F:r [E_f.-"':Tm _ 1]

m}'{




Velocity Overshoot, Cont’d
-

When steady state has been reached, the electrons have
traveled the distance:

T rz
r G m
d=1v, (dr=1
A S

0 em

For F, = 10kV/cm, we have that:

Fx

?7d» QDDK for electrons in Si
Why do we observe velocity overshoot?

1. The energy relaxation time is larger than momentum
relaxation time

2. At first, the electric field simply displaces the
distribution function with little change on its shape



Velocity Overshoot, Cont’d
-

3. Later on, collisions broaden the distribution, the
electron temperature increases and drift velocity
drops.

« Velocity overshoot effect reduces the electron transit
time, i.e. leads to faster devices.



Hydrodynamic Simulator
.

e Basic hydrodynamic equations

e Ensemble relaxation rates and their
calculation

e Discretization of the balance or
hydrodynamic equations



Basic Hydrodynamic Equations
-

 To derive the Balance Equations, one starts with the BTE ,
multiplies it with an appropriate function ¢(k) and integrates
over k to get:

where:

®(r,t) = [dpo(p)f(r.p,t)
Jo(r,t) = [dpo(p)v(p)f(r.p.t)
G,(r,t)=-eE -jdp(Vpd))f(r,p,t)

Ry () = ~[dpo(p) 3| | e

) ——




Carrier Density
-

« Balance equation for the carrier density is obtained by
assuming that ¢(p)=1: @(r,t) =n(r,t)
J
‘](I)(rvt) - Ide(p)f (rvpvt) =-——"1
e
G(I)(I‘,t) = 0

on
Ry(rt)=— —
(I)(r ) (atjcoll

* Using v=v +c, one gets the final form of the balance
equation for the carrier density:

on _ —V-(nvd)+(6—n)
ot ot coll




Drift vs. Thermal Energy in FD SOI

Channel Length =25 nm
Tsi =10 nm

INPUT VARIABLES
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Momentum

 Momentum Balance equation is obtained by assuming that

o(p)=p:
O(r,t) =Py =npgy

3410 =3,(r,0) = [dpv(p)pf (r.p.1)

G¢(r,t) = —enkE
o(npgy )j
R,(r,t)= —(
¢ ot coll

* This leads to the following momentum balance equation:

—a(npd)z—V-J _eng + [ 2Pa)
ot P ot el




Momentum, Cont’d
o

* For the flow of the momentum component p, we have that:

0J oJ oJ
pxx  “pyx | “Tp.zx

OX oy 0z

V-Jpx =V - [dpvp,f =
* Using again v=v4+c, one gets:
Jp’” = _[deI pjf =Nnm *Vdinj +nm?* <CiCj >

« Assuming diagonal temperature tensor, the above equation
simplifies to:

v.7. - 9VayxPay) o(NV gy Py ) , 0nvgzPgy) | O(nkgT)
Px OX oy oz oz
» The final form of the momentum balance equation is:

anpg) _ . (vgpg)-VinkgT) -enE + fmpd )j
po coll




Energy
.

* The Energy Balance equation is obtained by assuming that
o(p)=E(p):
d(r,t) =W =nw
Jp(r,t) = 3y, (r,t) = [dpv(P)E(P)F(r,p,t)
=nNwWvy4 +nkgTvy +NQ
Gy(r,t) =—eE-(nvy)

Ry(r,t) = —(a(g:N ))coll

* The energy balance equation is then of the form:

o(nw)
ot

=-V-(nwvy +nkgTvy +Nng)—enkE-vy +(

8(nw)j
ot coll




Closure
o

» To have a closed set of equations, one either:
(a) ignores the heat flux altogether
(b) uses a simple recipe for the calculation of the heat flux:

2
2m*v(w)

« Substituting T with the density of the carrier energy, the
momentum and energy balance equations become:

d¥d d
o 3 2 coll

a(nw):_v. nvdw+2V nvy -ty (W—lm*ng
ot 3 Kp 2
ot coll




Balance Equations
.

« More convenient set of balance equations is in terms of n, v

and w:

o(n) _ _v-(an)J“@?) I
co

a(Vd):_Vd.V(m*V )_ V(
ot m * d 3nm *

_eE, (5(Vd )j
m* ot coll

nw —1nm *vdzj
2

L2
W) _ vy vw-2v.|[nvg - v|w-m"Va
ot 3n Kg 2




Reduction to Drift-Diffusion Model
e

 The DD model is obtained by simplifying the momentum balance
equation, which in 1D is of the form:

5(sz) 0 (

%, o(P,)
nv — —~(nkeT)-enE + Z4
ot 0z aPa) 82( 1D ( ot )CO”

= —a(ZnW)—enE—<1>PZ

0z Tm
* In steady-state, one gets for the momentum balance equation
that:
on 2 OW
J, =neu,|E+E'|[+eD,— where: E'=="—"7F
Z Hn[ ] n 5z .
D - 21 ,W

M e



Simplifications

e The DD model is then obtained by making
the following assumptions:

— The distribution function is close to the equilibrium
value

- The energy gradient field is zero.

- In the extended DD model u(E) and D(E) are
assumed to depend upon the local field values
only.



Ensemble Relaxation Rates
e

* To see how one can calculate the momentum and the energy
ensemble relaxation rates, it is necessary to go back to the
definition of Ry: |

R(I) :V(I)((D_(DO) | ;
=—|d pcb(p) -
ot coll =)
_ J‘d d(P)f(r,p,t) T , M
74(P) e

where the relaxation time T IS:

1 d(p' )}s B el N . e
Td)(p) p.l: (I)( ) (p P ) X ihl-.p_,._:.-,f )




Ensemble Relaxation Rates
e

 The ensemble relaxation rate, which appears in the carrier

density balance equation, is related to the intervalley transfer in
many-valley semiconductors. It equals to:

on . B
(atjcoll B Vn(n nO)

One usually calculates this ensemble relaxation rate by using
Monte Carlo simulation:

omnn o neer -
BRI BEEIEELE ; =]
! _ Voo =
n,ij
B N Ti
;TY:tT_L_JLLt ! _Nj—>i
il i2 i3 T T Tin V n y JI - T
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Momentum Relaxation Rate
e

« The momentum rate is determined by a steady-state MC
calculation in a bulk semiconductor under a uniform bias
electric field, for which:

oV oV
d__CE (Ma]  __CE_ wvg =0
ot m * ot coll m *
eE 1-10110':‘ "
Vp(W) — 12Cj
m*vy 100
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Energy Relaxation Rate
S

 The emsemble energy relaxation rate is also determined by a
steady-state MC calculation in a bulk semiconductor under a
uniform bias electric field, for which:

aW:—eE-vd +(8Wj =—-eE-vq —v,,(W-wg)=0
at CO” 4x10"? -
EEVd a3
vy (W) = —
w (W) W — W
2 —

RELAXATION RATE v, [1/s]

|

02 03 0.4

ELECTRON ENERGY [eV]



Simulation Example — Importance of
Velocity Overshoot

25nm FD-SOT MOSFET Average Electron Velocity
0 Along The Channel
2 |\ 100nm FD-SOI MOSFET
> 5 X 105”7 7‘7 77'”‘”77'7'
R N T o A —Tgate=300K‘
Tgate=400K
L =AY ____ | 2p-=—Tgate=600K 140nm FD-SOI MOSFET
5 X 10°
A/ A B ——Tgate=300K
A chame | snezione
0 2.5 5
X (m )
Y R R R EEEEE -
For 80 nm and larger devices,”’ *'°
simulated carriers are not in the
velocity overshoot regime in the

larger portion of the channel.



Discretization of the Balance
Equations

» For simplicity, the equations will be discretized on an equally
spaced meshes. In 1D and in finite-difference operator notation,
the RHS’s of the equations that need to be solved are:

Gnji = —NiLx (Vi) —ViLx(n;)
2 1 2 ekE;

GV,i = _ViLX(Vi)_n-m *Lx(niWi —2nim *Vi )—i —Vp(Wi)Vi
I

m
>
2 m *v;
G, :_ViLx(Wi)_gniLx[niV{Wi -, J]

2
¢ m *v;
skL[W zJE IR

e
Gyi = Lxx((Pi)+8(ND,i —n;)



Discretization of the Balance
Equations (Cont’d)
e

* The various explicit schemes that one can use are listed below:

(a) Forward-time centered-space scheme (FTCS):

f
fooq—f_ f._, —2f +f of| ' —f
LX[F]::'+1 = L fi]: = I ~ |

=% bl w2 AT At

(b) Upwind scheme:
fi —fiq

uw Vi A . Vi >0
vill lil=4 )if.
Vi H_i)(l’ Vi <0

(c) Lax-Wendroff scheme:

LW 2 At
Vil_X [fl] :ViLX[fi]_Vi 2LXX[fi]




Discretization of the Balance
Equations (cont’d)

(d) DuFort-Frankel scheme: —
|—:|__f|]c _f-p+fi+1
I‘XX [fl ] — 2| INTIAL CONDITION
AX Hd
off f —P -
ot i 2At BALANCE EQUATION FOR n

BALANCE EQUATION FOR v

BALANCE EQUATION FOR w

(e)  Leapfrog scheme:

POISSON EQUATION

|_hc [fi]= fia—Tia

X 2AX .
of f —P
i

ot 2At
(e )




Energy Balance Model Implementation
In Silvaco

For a detailed description of the energy balance/hydrodynamic
model please review the lecture notes on hydrodynamic modeling.

Important features of this example are:
- The MATERIAL statement is used to assign the energy
relaxation times (taurel.el, taumob.el, ...)
- The MODELS statement is used to select the physical
models used (hcte)
- The IMPACT statement is used to assign the energy
relaxation length for the Selberherr model

Only parts of the listing that are relevant for the device simulation
part are extracted in the next few slides.



More Detalls

E. TAUR.VAR specifies that electron temperature dependent energy relaxation time
is used. Use parameters TRE.T1, TRE.T2, TRE.T3, TRE.W1, TRE.W2 and
TRE.W3 on material statement to specifie the energy relaxation time.

H.TAUR.VAR specifies that hole temperature dependent energy relaxation time is
used. Use parameters TRH.T1, TRH.T2, TRH.T3, TRH.W1, TRH.W2 and
TRH.W3 on material statement to specifie the energy relaxation time.

HCTE specifies that both electron and hole temperature will be solved.
HCTE.EL specifies that electron temperature will be solved.
HCTE.HO specifies that hole temperature will be solved.

F.KSN specifies the name of a file containing a C interpreter function specifying the
electron Peltier coefficient as a function of electron energy.

F.KSP specifies the name of a file containing a C interpreter function specifying the
hole Peltier coefficient as a function of hole energy.

KSN specifies which hot carrier transport model will be used for electrons. KSN=0
selects the hydrodynamic model and KSN=-1 selects the energy balance
model.

KSP specifies which hot carrier transport model will be used for holes. KSP=0
selects the hydrodynamic model and KSP=-1 selects the energy balance
model.



More Detalls ...

TAUMOB specifies the dependence of relaxation times with carrier
temperature in the mobility definition. If TAUMOB is specified, the
values of MATERIAL statement parameters TAUMOB.EL and
TAUMOB.HO are dependent on the carrier temperature.

TAUTEM specifies the dependence of relaxation times with carrier
temperature. If TAUTEM is specified, the values of MATERIAL
statement parameters TAUREL.EL and TAUREL.HO are dependent
on carrier temperature..

N.TEMP or HCTE.EL specifies that the electron temperature equation will
be solved.

P.TEMP or HCTE.HO specifies that the hole temperature equation will be
solved.



Structure Being Simulated

DEVEDIT
Data from mos2ex05_0.str

Microns

0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
Microns



Simulation results: DD vs. Energy
Balance

ATLAS OVERLAY
Data from multiple files

0.001 — Velocity sauration

0.0008 —
0.0006 —
0.0004 —
0.0002 =

0=

velocity
overshoot

CE | I T 1 | [ | [ | | | | | S| | [ | T 1 | T T
0 1 2 3 4 5 6 7
Drain Voltage (V)



FD Device Generations Examined
o

feature 14 nm 25 nm 90 nm
Tox 1 nm 1.2 nm 1.5 nm
VDD 1V 1.2V 1.4V

Source/drain doping = 10%° cm3
Channel doping = 108 cm3




What happens in a 14 nm FD SOl
Device?

0

0.01 0.02 0.03

Microns

0.04 0.05 0.06



Results for 14 nm FD SOI Device

1 Vg=1V T
0.01 —: 1=0.2 ps
0.008 —f
0.006
' Drift-diffusion
0.002 — e SEIEIEIEIEIEIEDE
0—

I | I I I | I I I | I I I | I I I | I I I | I I
0 0.2 04 0.6 0.8 1
Drain Voltage (V)



Results for 25 nm FD SOl Device

1 Vg=1.2V Hydrodynamic

Drift-diffusion

[ | T 1 | T 1 | T 1 | T 1 | T 1 | T 1 | [T
0 0.2 0.4 0.6 0.8 1 1.2
Drain Voltage (V)



Results for 90 nm FD SOl Device

0.0024 hydrodynamic

£y

Drift-diffusion

T [ T T T[T T T [T T T[T T T[T T T [T T T[T T T [T 711
0 0.2 0.4 0.6 0.8 1 1.2 14

Drain Voltage (V)



Results from Hydrodynamic
Simulations

Device Structures Being Simulated

feature 14 nm 25 nm 90 nm

Tox 1nm 1.2 nm 1.5 nm
VDD 1V 1.2V 14V
overshoot 240% 136% 22%

Source/drain doping = 1E20 cm-3
Channel doping = 1E18 cm3

Overshoot= (ID,,5-1Dpp)/IDpp (%) at on-state



Hydrodynamic Simulations
.

 In summary, we need to use at least hydrodynamic model to
describe the velocity overshoot in nanoscale devices

T Sy

Ze+05 —

Buried D%iﬁ'ia' (BOX)

Substrate

We have non-stationary transport

Electran Welocity (mis)

== throughout the whole channel
length (almost ballistic transport)

T T T T
0 40 &0
Distance, = (nm)



Problems with Hydrodynamic
Simulations
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