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� Nanoelectronics
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Considerations
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� Quantum Dots
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Nanotechnology/Nanoelectronics

� Nanotechnology is the design and construction of 

useful  technological devices whose size is a few billionths of 

a meter

� Nanoscale devices will be built of small assemblies of 

atoms linked together by bonds to form macro-molecules 

and nanostructures

� Nanoelectronics encompasses nanoscale circuits and 

devices including (but not limited to) ultra-scaled FETs, 

quantum SETs, RTDs, spin devices, superlattice arrays, 

quantum coherent devices, molecular electronic devices, 

and carbon nanotubes.



Computational Nanosciences Group

Motivation for Nanoelectronics

� Negative resistance devices, switches (RTDs, 

molecular), spin transistors

� Single electron transistor (SET) devices and circuits

� Quantum cellular automata (QCA)

Limits of Conventional CMOS technology
� Device physics scaling

� Interconnects 

Nanoelectronic alternatives?

Issues
� Predicted performance improves with decreased 

dimensions, BUT

� Smaller dimensions-increased sensitivity to fluctuations

� Manufacturability and reproducibility

� Limited demonstration system demonstration

New information processing paradigms

� Quantum computing, quantum info processing (QIP)

� Sensing and biological interface

� Self assembly and biomimetic behavior
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Transport Regimes

�Classical�

�Quantum�

Transport regime 
depends on length 
scale: 
l-Phase coherence 
length
lin-Inelastic mean 
free path
le-Elastic mean 
free path
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New Phenomena at the Nanoscale
Quantum Confinement- small dimensions lead to quantum 
confinement and associated quantization of motion leading 
to discrete energy levels
Quantum Interference- at dimensions smaller than the 
phase coherence length, the wave-like behavior of particles 
manifests itself, leading to reflection, refraction, tunneling, 
and other non-classical wave-like behavior
Phase Coherent Transport- at dimensions smaller than the 
mean free path for scattering, transport is ballistic rather 
than diffusive
Single Electron Effects- for small structures, the discrete 
nature of charge itself is important, and the associate energy 
for transfer of charge is non-negligible compared to the 
total energy of the system
Spin Dependent Transport- Due to effects of quantum 
confinement, spin dependent phenomena may be enhanced.



Computational Nanosciences Group

Quantum Confined Structures:
General Consideration

Confinement in one dimension: 
Quantum Well, Quasi-two-
dimensional electron gas (2DEG) 

Confinement in two dimensions:  
Quantum wire, quasi-one-
dimensional system (1DEG)

Confinement in all three directions:  
Quantum dot, artificial molecule.  
No degrees of freedom, completely 
discrete energy spectrum, singular 
density of states
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Example 1 of Quantization:
Quantization at the Si-SiO2 Interface
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Capacitance Degradation
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1) Long channel devices, tox large
Cox small, Cox/Cinv→0, Ctot=Cox

2) Nano-scale devices, tox small
Cox large, Cox/Cinv finite, Ctot<Cox

Note that Cinv is always large because the
thickness of the inversion layer is small



Computational Nanosciences Group

Threshold Voltage Shift

0

100

200

300

400

500

1016 1017 1018

Van Dort experimental data for  t
ox

=14 nm

Our simulation results for  t
ox

=14 nm


V

th
  [

m
V

]

N
A
 [cm-3]



Computational Nanosciences Group

Example 2 of Quantization:
Quantum Wells and Heterostructures

sGaAs/AlGaAfor  65.0y  empiricall      fEfE gc

A AB

CB

VB
QW

c1

c2
cE

vE
hh1

hh2 lh1

Each state (c1, c2, hh1, hh2, 
etc. corresponds to the 
formation of a two-
dimensional subband, which 
is free electron like in plane 
parallel to well.
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Transfer Chamber

Cryopump

Surface Prep Chamber

Ion Pump

Growth Chamber
LN2

Epitaxial Growth: MBE, MOCVD, 

MOMBE, MOVPE�
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Epitaxial Layer Structure: Vertical 

Confinement

TEM Cross Section
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Lattice Constant vs. Bandgap
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Band Diagrams of Heterostructures
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Straddled � Type I Staggered � Type II Broken � Type III

There have been numerous attempts and models to 
predict band offsets.

Band Allignments
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(A) Linear Superposition of Atomic-
Like Potentials

The linear superposition of atomic-like potentials is a model due to 
Kroemer, 1975, 1985.  
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� Kroemer pointed out that the problem of theoretically 
understanding the relative alignment of bands is the 
problem of determining the relative alignment of the two 
periodic potentials of the two semiconductors forming 
the heterostructure. Once the periodic potential of a 
semiconductor is known, the energy bands can be 
calculated.

� The periodic potential of the semiconductor can be 
viewed as a linear superposition of the overlapping 
atomic-like potentials.

� Although the model of the superposition of atomic-like 
potentials is very instructive, the ability of this model to 
predics offsets between semiconductors is very limited 
(Kroemer, 1985).
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(B) The Electron Affinity Model

The electron affinity model is the oldest model to 
calculate band offsets (Anderson, 1962). This model is 
found to give accurate predictions for the band offsets for 
several semiconductors, while the model fails for others. 
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(C) Anderson Electron Affinity Model

The electron affinity model works for some semiconductors and 
does not work for others. 
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(D) Common Anion Rule
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(E) Harrison Orbital Model

Harrison orbital model is based on linear combination of atomic 
orbitals.
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(F) The Effective Dipole Moment
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(G) Linearity of Band Offsets



Computational Nanosciences Group



Computational Nanosciences Group

kx, ky
D

E

HH

LH

E

Quasi-Two Dimensional System
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Calculation of Electronic States

Self-consistent Schrödinger-Poisson in 1D
Single Band Effective Mass: Schred
(www.nanohub.org/tools/schred) 
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Arbitrary
units
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Calculation of Electronic States

Multi-Band Effective Mass: k�p*

� Must solve a coupled set of 
envelope function equations, one 
for each CB and VB included

� Strain maybe be included

� Mixing of light hole and 
heavy hole states

� Reduction or increase in hole 
mass depending on 
confinement and strain

*Bastard et al., Sol. Stat. Phys. 44, 229 (1991)

Other Methods:
�Tight Binding
�Pseudopotential
�Ab initio
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Diffusive Transport in Quantum Confined Systems

Time dependent perturbation theory (Fermi�s Golden rule)

n=m Intrasubband scattering

nm Intersubband scattering

Non-bulk scattering 
processes:
�Confined phonons
�Surface roughness
�Remote Impurities

Other Issues: reduced phase 
space, screening

2

k

Transport: 
�Relaxation time
�Kubo formula (linear response)
�Monte Carlo simulation
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Universal mobility 

Effective transverse field:
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Surface Roughness Scattering

Idealized

(r)


L

Si

SiO2

Roughness scattering defined in terms of fluctuation of 
the oxide semiconductor interface described by (r). 
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T. Ando, J. Phys. Soc. Jpn. 43, 1616 (1977)
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Surface Roughness Scattering

(Goodnick et al., PRB32, 8171, 1985)
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Isotropic models
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Si/SiO2 interface 
Roughness
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Green's functions approach

Q2DMC - degenerate statistics

Q2DMC - nondegenerate statistics
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Simulation Mobility Results vs. Experimental Data

The role of Pauli exclusion
principle (screening not included)

 = 0.284 nm
 = 2.42 nm

Coulomb scattering
not included in the model
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Transport in III-V Quantum Wells 

Polar Optical Phonon Scattering
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High Mobility Modulation Doped Systems 

� Typically GaAs/AlGaAs or 

InAlAs/InGaAs/InP

� Channel defined by the 

2DEG at the heterointerface

� Operation similar to 

MOSFET

� Modulation doping to 

guarantee high mobility 

� Very fast device (ft ~ 500Ghz)

�Reduced impurity scattering; 

reduced density of final states

�Mobilities in excess of 20x106 

cm2/V-s
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Pfeiffer et al.
Appl. Phys. Lett. 55,
1888 (1989)
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Multi-quantum well (MQW) or Superlattice (SL) 

SL

Several quantum well systems 
together form a MQW system.  It 
the wavefunctions overlap, and 
the structure is periodic, then 
super Bloch states form, giving 
a superlattice (SL) type behavior 
in normal direction (still free 
electron like in transverse 
direction). 

Transport in Superlattices
�Nonlinear transport, negative differential resistance
�Wannier-Stark states
�Bloch oscillations 
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Wacker et al., Phys. Rev. Lett. 83, 836 
1999

Menendez et al., PRL 60, 2426, 1988

Superlattice (SL) Transport
Stark Localization
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10-100 nm Lithographic Techniques

�Electron Beam Lithography (EBL)

�Focused Ion Beam Lithography (FIB)

Quantum Wires/Dots: 
Nanofabrication
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Quantum Corral

Atomic Manipulation using Scanning 
Tunneling Microscope (STM)
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Top Down: Lithographically Defined 

Quantum Wires

Top Down: Lithographically Defined 

Quantum Wires

SPLIT-GATE technique  

Etched structures

Quantum Point Contact (QPC)
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Simulation of Transport in Si Nanowires*

Poisson Solver

Schrödinger Solver

Monte Carlo 
Transport Kernel

Low field Electron Mobility

Surface Roughness
Acoustic Phonons
Intervalley Phonons

SOR
ARPACK

*E. B. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic., 
IEEE Transactions on Nanotechnology 6, 113 (2007).
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Scattering Rate Calculation
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Acoustic Phonons

Intervalley Phonons 

Surface Roughness



NANOELECTRONICS THEORY GROUP

Effect of Decreasing Wire Width on Mobility

� High fields �Mobility increases
� Low and moderate fields �Mobility decreases 
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Confined Acoustic Phonons � XYZ Algorithm

� Displacements are obtained from a set of basis functions which 
are powers of Cartesian coordinates.
� Can handle square cross-sections.
� FSBC is inherently built into the formalism

N.Nishiguchi, et al., J. Phys.: Condens. Matter Vol.9, 5751, 1997

0ij j s
T n 
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Mobility at High Fields

� Carriers move away from the top interface due to Volume 
Inversion
� Surface roughness effect decreases

�Mobility increases
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Transport in Long NanowiresTransport in Long Nanowires

�Predictions that transport should be improved due to 
reduction of phase space for scattering, reduced coupling 
to phonons (bottleneck effects).
�Predictions of Luttinger liquid type behavior due to 
collective excitations of 1D gas
�Measured mobilities in lithographically defined 
nanowires are less than the bulk due to process induced 
roughness and other inhomogeneities.
�CNTs show high conductivity, effective mean free paths 
of several microns at room temperature inferred.  
Difficulty in extracting CNT resistance from contact 
resistance.
�Semiconductor nanowires show much higher effective 
mobilities than etched structures, but limits due to 
surface states and surface morphology, as well as contact 
issues.
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Quantum Coherent Transport
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� In a purely quantum mechanical view of 

transport, current is due to the net flux of particles 

across a scatterer

jr

jl

Assuming that the contacts are in 

equilibrium, and integrating over the 

transverse degrees of freedom, gives the 

Tsu-Esaki formula
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Resonant Tunneling Diode (RTD)
Conduction band edge [eV]

1.4 1.7

barrier

barrier

well

1-10 nm

1-10 nm

1-10 nm

z
substrate

GaAs

GaAs

GaAs

AlGaAs

AlGaAs

Quasi-localized state 

Resonant Tunneling Diode

Localized state

Quantum Well

CB

Tsu and Esaki, APL 22, 562, 1973
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RTD: current-voltage characteristics
- + I

V

N I N

B C

Figure of merit:  peak-to-valley ratio (PVR) = Ipeak/Ivalley
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Transport processes in RTD

A

A Resonant tunneling

B

B Tunneling with phonon emission

C

C Tunneling with phonon absorption

D

D Non-resonant tunneling

E

E Thermionic emission

but also �.
� particle-particle interaction
� interface roughness
� impurities
� alloy disorder
� multi-valley tunneling
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Typical RTD structures

Intraband

GaAs/AlGaAs
GaAs/AlAs
InGaAs/InAlAs
Si/SiO2
Si/SiGe

Interband

InAs/AlSb/GaSb

valence band

conduction
band

InGaAs/InAlAs (PIN diodes)

P I N



Computational Nanosciences Group

Resonant Tunneling Diode (RTD) Attributes
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Split gates create further confinement

if  V < 0
g

electrons are 
depleted from 
beneath gates

gates on top of 
heterostructure

overview:

V(y)
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y
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W

confining 
potential: W decreases with

V 
g

1

z

(Must be obtained by a self 
consistent calculation
for an  accurate answer)

overview:

y
x W

   2D  
electron 
    gas

   2D  
electron 
    gas

L
Long L = quantum wire
short L =  quantum point contact

Confinement creates modes (channels) 
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Total wave function is a linear combination
over right and left traveling modes  :

n
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A mode propagates if : F
n
y EE 

Coherent Transport in Quasi-1D
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Coherent Transport in Quasi-1D

� In 1D, current is balance of left and right fluxes

Including a factor of 2 for both spin channels, the Landauer formula 

results for the two terminal conductance
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What actually goes into Tn,m?
Group velocity
of mode m

Group velocity
of mode n

Transmission  amplitude
From mode n to mode m

Tn,m represents the ratio of transmitted current
into mode m with the incident current from mode n
(incident amplitude = 1)

Transmisssion in Quasi-1D
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Conductance through a 1D channel is quantized 

(Wharam, van Wees, 1988)

Quantized conductance consistent with 

Landauer/Büttiker model  

,3,2,1,
2 2

 N
h

e
NG

K. J. Thomas et al.
Phys. Rev. B 58, 4846 (1998)

Quantum Point Contacts and WaveguidesQuantum Point Contacts and Waveguides

This implies that the 
transmission is unity through 
QPC
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Quantized ConductanceQuantized Conductance

Quantized conductance assumes no 

backscattering, i.e. T=1

For long constrictions, this breaks down  
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CONTACT-
RELATED

RESISTANCE

DISORDER-
RELATED

RESISTANCE

Breakdown of Quantized ConductanceBreakdown of Quantized Conductance

EF EF + eV
DISORDERED

REGION
EF EF + eV

NO DISORDER WITH DISORDER

Assume that Tn=Tpc for all n

 In this case the TOTAL resistance represents the SUM of a quantized CONTACT
resistance GQ

-1 and a DISORDER-RELATED resistance GD
-1

 Since GD
-1 is NOT quantized G itself is also NOT quantized
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Discrete Schrodinger  Equation
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 Standard SE:

Replace derivatives with finite differences: x=ai, y= aj
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Numerical Simulation of Transport
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Matrix Form

apply Dirichlet boundary conditions on upper and lower boundary:

01,0,   Mjiji 

Wave function on ith slice 
can be expressed as a vector
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Numerical Simulation of Transport
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(1b) can be rewritten as:

Combining this with the trivial equation one obtains:
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Solving the eigenvalue problem: 
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T yields the modes on the

left side of the system

Modification for a perpendicular 
magnetic field  (0,0,B) :
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Obtaining transfer matricesNumerical Simulation of Transport
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Transfer matrix equation for translation across entire system
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Transmission matrix

Zero matrix
no waves incident 
from right

Unit matrix
waves incident 
from left have unit
amplitude

reflection 
matrix

Converts from mode basis
to site basis
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Simulation of Transport

Usuki, PRB 52, 8244, 1995
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Quantum Point Contacts

Model QPC Potential: G. Timp
Semiconductors and Semimetals
vol. 35, Ed. M. Reed, pp. 113-190

CURRENT
FLOW

Simulation of Transport

Effect of Sharpness of QPC:
�Abrupt- Resonances due to internal 

reflection
�Smooth- Adiabatic QPC
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