

Network for Computational Nanotechnology (NCN)

Berkeley, Univ. of Illinois, Norfolk State, Northwestern, Purdue, UTEP

Performance Limitations of Graphene Nanoribbon Tunneling FETS due to Line Edge Roughness

Mathieu Luisier and Gerhard Klimeck

Tunneling Transistor after MOSFET?

MOSFET: Thermionic Current

TFET:
B-to-B Tunn.
Current

Graphene Nanoribbon TFETs

Graphene Nanoribbon:

GOOD:

- One-Dimensional Structure
- Compatible to Planar Tech.
- Low Effective Masses
- Tunable Band Gap (Width)

BAD:

- Band Gap => Narrow Ribbon
- Edges => Roughness

Bandstructure of 5.1nm GNR Symmetric CB and VB Band Gap $E_{\alpha} = 0.251 \text{ eV}$

- Introduction
- Physical Models
 Bandstructure and Transport Models
- Ideal Graphene Nanoribbon
 Structure Definition and Optimization
 Transfer Characteristics
- Line Edge Roughness
 Roughness Generation
 Band Gap Reduction
 Performance Deterioration
- Conclusion and Outlook

- Introduction
- Physical Models
 Bandstructure and Transport Models
- Ideal Graphene Nanoribbon
 Structure Definition and Optimization
 Transfer Characteristics
- Line Edge Roughness
 Roughness Generation
 Band Gap Reduction
 Performance Deterioration
- Conclusion and Outlook

Bandstructure Model

Nearest-Neighbor p₇ Tight-Binding Method

GOOD:

- one single parameter V_{ppπ}
- HOMO and LUMO bands
- atomistic description
- computationally efficient

BAD:

not really full-band

Transport Model

Quasi 3D Schrödinger Equation

$$H/\Psi_E > = E/\Psi_E >$$

Tight-Binding Ansatz for the Wave Function

$$<\mathbf{r}\mid \mathbf{\psi}_{E}> = \sum_{ijk} C_{ijk}(E) \Phi(\mathbf{r} - \mathbf{R}_{ijk})$$

$$(E-H-\Sigma)-G^R=I$$

$$(E-H-\Sigma)-C = Inj$$

Matrix Inversion Problem

Linear System of Eq.

- Introduction
- Physical Models
 Bandstructure and Transport Models
- Ideal Graphene Nanoribbon
 Structure Definition and Optimization
 Transfer Characteristics
- Line Edge Roughness
 Roughness Generation
 Band Gap Reduction
 Performance Deterioration
- Conclusion and Outlook

Graphene Nanoribbon with Armchair Edges

TFET p-i-n Structure:

- 5.1nm GNR Deposed on SiO₂ (N=21)
- 1nm EOT (2.35nm Al₂O₃ with ε_R =9.1)
- 40nm Gate Length
- 25nm Source and Drain Extensions

- Supply Voltage V_{DD}=0.2 V
- Symmetric Doping Conc.
- GNR Band Gap E_q=0.251 eV

I_d-V_{gs} Transfer Characteristics

ON-Current: I_{ON}=225 μΑ/μm

OFF-Current: I_{OFF}=37 nA/μm

Subthreshold Slope SS=12 mV/dec

- 1) How can we decrease the OFF-Current?
 - 2) How can we increase the ON-Current?

Determination of Supply Voltage

- ON-Current Increases with V_{DD} (due to Gate Voltage)
- Condition V_{bi}+V_{DD}<2*E_q must be Satisfied
- Condition Broken => Ambipolar Channel Behavior

- Introduction
- Physical Models
 Bandstructure and Transport Models
- Ideal Graphene Nanoribbon
 Structure Definition and Optimization
 Transfer Characteristics
- Line Edge Roughness
 Roughness Generation
 Band Gap Reduction
 Performance Deterioration
- Conclusion and Outlook

Structure Definition

- No Perfect Edges => Line Edge Roughness (LER) Scattering
- Simple Roughness Model: Remove Pair of Atoms with Probability P
- Random Distribution of Removed Atoms: N=21 to N=20

Band Gap Reduction

~Linear Dependence on P

Periodic Structure with 1 Defect/Period

GNR Density-of-States

- Spectral Density-of-States Around the Intrinsic Channel w and w/o LER
- Band Gape Reduction => Superlattice Structure => BG Localized States
- Localized States => Increased B-to-B Tunneling Probabilities

Multiple Random Samples Generation

- Roughness Probability P from 0 to 10%
- Statistical Sampling of LER (100 Samples per Roughness Probability)
- All Devices Different
- Need: Average ON- and OFF-Currents, Standard Deviations, and Max and Min Values

Graphene Nanoribbon TFETs with 10% of Edge Atoms Removed => Strong Variation of ON- and OFF-Currents, Poor Performances

Transfer Characteristics and I_{ON}/I_{OFF} Ratio

- Comparison of GNR TFETs with Different LER Probabilities
- Strong Deterioration of Most Device Performances
- Better Control of Edges or Better Structure Optimization

Conclusion and Outlook

GNR TFET Simulation

p_z Tight-Binding Orbital Model3D Schrödinger-Poisson Solver

Device Simulation

Structure Optimization (Doping, L_g, V_{DD})

LER => Localized Band Gap States

LER => Performance Deterioration

Outlook and Challenges

Ripples Scattering

More Accurate Bandstructure Model

Dissipative Scattering (EI-Ph)

