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Require a proximal probe (a sharp tip) 
to locally interrogate the surface of a 

bulk material 

Critical Realization (circa 1980)
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The Classical Picture
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de Broglie – 1923 “matter waves”

A Fundamental Breakthrough
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Schrödinger Wave Equation (1926)

• Can’t be derived, just like Newton’s F=ma can’t be derived

• Schrödinger’s equation is justified by agreement with 
experiment

• Solves a large number of non-relativistic problems in atomic 
and condensed matter physics

• Must be modified to include relativistic effects

• Describes the wave field of a particle; the so-called matter 
wave

If particles behave like waves,
what is the equation that describes the motion 

of these “matter-waves”? 
How does the wavelength of a matter-wave 

change with position and time?
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Define a Hamiltonian Operator, H

H EΨ = Ψ
Probability of finding electron at position r is given by

*Probability ( ) ( )r r= Ψ Ψ
 

2
2 ( )

2 e

H U r
m

≡ − ∇ +
 

Then solve for Ψ

Expectation (probability) of measuring a physical 
quantity X is given by

* 3( ) ( )X r X r d r
+∞

−∞

= Ψ Ψ∫
  

8



Physics of Field Emission (~1925)

+HV plate
~ few  cm
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The energy of 
electron does 
not change!
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What happens if the distance 
between the two  metals is reduced?

d≈1 nm

tip substrate

vacuum 
gapReal 

Space

Energy 
Diagram φ

FE
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The electron wavefunctions for a square barrier 
can be analytically solved
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The classical expression for current density produced by a 
charge q with velocity v is given by

j=qv

Now, if a single electron is described by a wavefunction Ψ(z,t), 
then the equivalent QM expression for the current is

j=-|e|<v>

where

Evaluating this expression using the time-dependent 
Schroedinger equation, we can define a probability current 
density given by 

*( , ) ( , )dv z t z z t d z
dt

ψ ψ
∞

−∞

= ∫

*
*

2
di dj

m dz dz
ψψψ ψ
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= − 

 



Calculating the Transmission Probability
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Transmitted current:
*
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http://phet.colorado.edu/simulations/sims.php?sim=Quantum_
Tunneling_and_Wave_Packets
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http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/barr.html#c1

Useful 
summary of 

barrier 
penetration

15



d
Metal 1 Metal 2

vacuum 
gapReal 

Space

Energy 
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Wavefunctions 

are now 
complicated 

(and unknown)!

In real life, it’s always more complicated

What to do?? 16
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Use insights gained from square barrier problem

Write wavefunction in barrier region as:
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very similar in form to T calculated earlier
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φ
FEe∆V

To make current flow, apply bias voltage ∆V
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Useful to define the Local Density of States (LDOS):
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18



The LDOS has a few nice features:

• It is independent of the volume of metal

• It is a number (for given z & E) that 
reflects the energy band structure of metal

• It can be used to obtain an expression for 
the current that flows

Note that: ( )
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LDOS Calculations

contours of constant 
charge density 

(proportional to  LDOS)

7-layer slab
Vacuum

Vacuum

LDOS

20



tungsten

copper
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2z
W-5d symmetry

W-5d symmetryxz
2 2W-5d symmetry

x y−

Total:

W electron configuration: 1s2, 2s2, 2p6, 3s2, 3p6, 3d10, 4f14, 5s2, 5p6, 5d4, 6s2

5d: n=5,l=2,m=0,±1,±2
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Element Al Au Cu Ir Ni Pt Si W
Φ (in eV) 4.1 5.4 4.6 5.6 5.2 5.7 4.8 4.9

α (nm-1) 10.3 11.9 10.9 12.1 11.6 12.2 11.2 11.2

Typical values
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Table from C. Julian Chen, Introduction to Scanning Tunneling Microscopy,  2nd Edition (Oxford University Press, Oxford) 2008.
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conducting 
substrate
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Use the tunnel current as 
a height monitor!
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I(x,y) = e∆Vρ(z=0.6 nm,x,y;EF)

X
Y

Z

~0.6 nm

Since gap is tunable, maintain constant current by continuously 
adjusting tip height.                                              

If tip scanned in controllable way - a microscope!

The Scanning Tunneling Microscope
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tip path 
constant

current 
constant

A z-height microscope!
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