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* Scanning Tunneling Spectroscopy (STS)

» Current Imaging Tunneling Spectroscopy (CITS)
» Apparent barrier height

» Force on the tip

- Atomic Corrugation

* Quantum Corrals



Scanning Tunneling Spectroscopy (STS)
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What determines number of electrons that flow
per unit time for an applied V?
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f (E) Is the Fermi-Dirac distribution function
Is the LDOS of tip

LPonsraelS the LDOS of substrate
T(E,V) is the transmission probability at energy E for an applied voltage V 4



Fermi-Dirac distribution function
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A few reasonable assumptions:

- measurements at room temperature or below. kgT at
room temperature is 0.025 eV

» for voltage increments AV > ~2 k;T/e, f(E) is well
approximated by a step function

- assume tip DOS does not change appreciably with
energy
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Current Imaging Tunneling Spectroscopy (CITS)

Measure topography and I(V) at each point:

Reconstruct
— “current” image

/ at preset fixed V

issue of drift
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Making it work
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Example

Current Imaging (CIT %) on a perfect Si(111)7x7 Surface
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Current Imaging Tunneling Spectroscopy on S5i{111)J7=7 at room
temperature. The topographic image is shown at the top ([t} = 0.35 nA,
Ugap = 1.73 V), followed by several CITS images ranging from -2.0 V to
+2.0 V. Spectroscopy data hawe been taken at every point of the frame for 9

these images.

Key Idea: Acquire
an (x,y) image at
different voltages.
Useful to visualize

filled and unfilled
states at each (x,y)
point

from Omicron web site



Measuring the apparent tunnel barrier height
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Apparent Barrier Height in Scanning Tunneling Microscopy Revisited
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The Force on the Tip Atom?

spring constant, k Frostore = ~KZ

® >

tip

collective tip-
substrate

interaction
+ atom-
atom
interactions




How to measure?

Cantilever Physics - STM tip
static model

microcantilever Au substrate
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see Cross et al., Phys. Rev. Lett. 80, 4685 (1998).
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Adhesion Interaction between Atomically Defined Tip and Sample

G. Cross, A. Schirmeisen, A. Stalder, and P. Griitter*
Center for the Physics of Materials, Department of Physics, McGill University, Montréal, Canada

M. Tschudy and U. Diirig*

IBM Research Division, Zurich Research Laboratory, CH-8803 Riischlikon, Switzerland

(Received 24 November 1997)
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FIG. 3. Force versus tip-sample separation measured on a
flat terrace using a W-trimer tip (tip-sample separation 1is
defined as the relative motion of the tip with respect to the
substrate using a tunnel resistance of 100 M) as the reference
point). Note the hysteresis of 7 eV between the approach and
retraction curve, indicating that dissipative processes take place
in the range of the adhesion maximum. Also note that no
spontaneous jump to contact followed by the formation of an
adhesion neck occurs. The attractive interaction has a length
scale of 1 nm, 1 order of magnitude larger than expected from
universal scaling laws. The repulsive branch of the force curve
1s essentially linear (corresponding to a contact stiffness of
40 = 20 N/m, indicated by the dashed line) and reversible.
Surprisingly, the tip-sample junction can support a repulsive
load of at least 5 nN corresponding to a contact pressure of
25 GPa. The compounded errors in determining the force scale
correspond to £35%: the compounded errors in the tip-sample
separation s are =20%.
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Force [nN]

PHYSICAL REVIEW B 71, 193407 (2005)

From tunneling to point contact: Correlation between forces and current

Yan Sun. Henrik Mortensen, Sacha Schér, Anne-Sophie Lucier, Yoichi Mivahara, and Peter Griitter
Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H34 218, Canada

Werner Hofer
Surface Science Research Centre and the Department of Physics, University of Liverpool, Unired Kingdom
(Received 7 February 2003; published 25 May 2005)
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Junction Stability
Nanomechanical Effects
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from Intro to Scanning Tunneling Microscopy, C. Julian Chen (Oxford Press, Oxford - 2003), pg. 228 16



Atomic Corrugation - How High is an Atom?

PHYSICAL REVIEW B VOLUME 58, NUMBER 24 15 DECEMBER 1998-11

Prediction of bias-voltage-dependent corrugation reversal for STM images of bee (110) surfaces:
W(110), Ta(110), and Fe(110)

S. Heinze
Institut fitr Festkorperforschung, Forsclnmgszentrum Julich, D-32425 Julich, Germany
and Zentrum fiir Mikrostruktuforschung, Universitar Hamburg, D-20355 Hamburg, Germany

S. Bliigel”

Institut firr Festkorperforschung, Forsclnmgszentrum Julich, D-32425 Julich, Germany

R. Pascal, M. Bode, and R. Wiesendanger
Zemtrmm fur Mikvostrukturfarschung, Universitar Hambwrg, D-20355 Hamburg, Germany
(Received 15 July 1998)
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Heinze et al., Phys. Rev. B58, 16432 (1998).
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Heinze et al., Phys. Rev. B58, 16432 (1998).
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Quantum Corrals

» Confine electrons inside artificial structures
* Requires atomically flat metallic substrates
* Requires the presence of surface electron states

* Construct 2D atomic "fence" of electron scattering centers

* New way of guiding information through a solid
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Elliptical Shapes are Special
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FIG. 10 A sketch from “Wellenlehre” (“Wave Teachings”),
an 1825 book published in Leipzig on wave theory by two of
the three Weber brothers scientists from Saxony, Ernst and
Wilhelm, showing the wave pattern of mercury waves when
small amounts of mercury are dropped in at one focus. Notice
how the other, opposite focus looks identical, indicating that
from the point-of-view of the wave, the two foci are excited
equally.

from Fiete and Heller, Rev. Mod. Phys. 75, 933 (2003)



36 cobalt atoms forming an elliptical
structure on Cu(111) substrate

—r®

>

O ellig

Manoharan, Lutz and Eigler, Nature, 3 February 2000
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Topography

DOS
(dI/dV)

Fiete and Heller, Rev. Mod. Phys. 75, 933 (2003)

Experiment
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Quantum Corral
Simulation

http://mw.concord.org/modelerl.3/mirror/quantum/corral .html

See also Prof. E.J. Heller's lecture at
https://nanohub.org/resources/3253/
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SUMMARY

To do STM well, you need

i) high quality, FLAT, well characterized, electrically
conducting substrates;

i) UHV and Low Temperature equipment;

iii) lots of tfime and money;

iv) infrastructure, infrastructure, infrastructure;
and

v) good theoretical support.
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