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Applications of 
Density Functional Theory:
Computational Materials Science

Goal [Tutorials + Lab Exercise]:
To understand theoretical background and
practical aspects of first-principles calculations of
structure and phonons in bulk and nano-scale
materials: provide non-empirical inputs to 
nano-electronics and nano-phononics,
use through nanohub. 
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Outline

Introduction: Phonons, soft modes
Introduction: Computational Materials Science

First-principles Density Functional Theory
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Stress

Electric Field Magnetic Field

piezoelectric piezomagnetic

magnetoelectric

Important Fields and Couplings in
smart functional materials

strain

polarization magnetization
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Introduction: Vibrations
0.5 eV 0.12 eV

Vibrational frequency:
ω ~ measure of 

stiffness of a 
bond
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Vibrations of a Crystal

Giannozzi et al PRB 43, 7236 (1991).

Ghose et al, Phys Rev Lett 96, 035507 (2006).

MgO

LO-TO splitting: 
measure of coupling 
with electric field
screened by electrons

IR and Raman
Spectra:
long wave-length phonons

Infinitely many bonds and
vibrational modes:
Bloch vector k = λ

π2
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58

3

C11(GPa) C12(GPa) C44(GPa)
MgO 299 96 157
CaO 221 58 80
SrO 172 45 56
BaO 121 50 38

13 8.5

5

Wu and Ceder, JAP 89, 5630 (01)

Gupta et al,SRX Mat Sc (2010)

M(Mg)=24 M(Ca)=40

M(Sr)=88



Vibrational spectra:
Finger-print of a material

Eg. Graphene: use of Raman to characteize
no of layers, disorder, level of doping

Can you hear the shape of a drum?  - Feynman
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Nature 145, 147 (27 January 1940) | doi:10.1038/145147a0.
The α-β; Transformation of Quartz

C. V. RAMAN & T. M. K. NEDUNGADI 

Abstract
In the hope of obtaining an insight into these remarkable phenomena, a 
careful study has been made of the spectrum of monochromatic light 

scattered in a quartz crystal at a series of temperatures ranging from that of 
liquid air to nearly the transition point. Significant changes are observed 

which are illustrated in the accompanying illustration, reproducing part of 
the spectrum excited by the 4358 A. radiation of the mercury arc.

w

T

Tc

Soft mode
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Soft Modes
Vibrational modes of frequencies < 100 cm-1 (hν < 12.5 meV)
Analogy with electrons at or near the Fermi energy

Relevance to low-energy / temperature phenomena

+

khard

+

ksoft

+

+

Electric Field

d

d

k
qEd =

q

ksoft <  khard

Smaller the frequency, greater is the response:

CV Raman & Nedungadi, Nature (194
W Cochran (1959).
PW Anderson (1960).

Hard Materials: B > 0.10 BDiamond

E

d

Soft mo

k~w2
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Soft Modes (contd)
Vibrational modes of frequencies < 100 cm-1 (hν < 12.5 meV)

Relevance to Temperature Dependent STABILITY

Lower the frequency, greater is the entropy and lower free energy:

Soft modes give lower free 
energy particularly as T increases

Effects of anharmonicity are large:  
T-dependent structural transitions.

so
ft
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Determination of phonon dispersion

1. Obtain K-matrices at various wave-vectors (q) in the 
Brillouin zone using DFT-linear response

2. Use iFourier series to transform K(q) to K(R) = real-space 
force constant matrices

3. Use Fourier series to obtain K(q) at arbitrary wave vector q
4. Eigen-spectrum of D(q)=K/√(MiMj)  gives all phonons!

1. First-order Raman: some optic phonons at q →0 
2. Second-order Raman: in-principle all phonons, not 

dispersion
3. Brillouin spectroscopy: Acoustic phonons at q →0 
4. Neutron scattering: phonon dipsersion w(q), 

eigenvectors may not be accessible.

First-principles Simulations [T=0 K]

Experiment



Introduction to First-principles
Density Functional Theory
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Theoretical and Computational Materials Science

Defects, eg. grains, dislocations

Continuum analysis

Electronic orbitals, 
Nuclei, vibrations Material-specific
microscopic info

Intermediate-scale
structure: properties

Devices, applications

Sub-angstrom

Nano-m, microns

μ, mm

“First-principles” or  “Ab Initio”

Landau-theory



INTRODUCTION: Computational Materials Science
• Diversity in the Solid State
* Chemical constitutents: example, Si and C

Combination of elements: complex materials
*  Structure:example, graphite, Fullerene and diamond

Size, scale

• Change (transition) from one state to another
Change in Symmetry
--- Signatures in material properties

Advanced Materials: are on the edge of many such 
transitions !

• Design of New (better) Materials and
Structures of reducing size need:

*  Microscopic understanding
*  Atomistic Modeling

Reduce the  phase space 
of exploration/design



Theoretical Model of Materials
Capture both material-specific and universal properties
Goals:
1. Identify microscopic mechanisms
2. Complement experimental probes
3. Predict new materials or structures

Ingredients:
Electrons: Need Quantum Mechanics

Interacting many-body problem
Approximate ground state: Density Functional Theory
* Not-so-good for strongly correlated systems

Nuclei:     Often classical mechanics suffices
*  Needs the inter-atomic potential

Electrons and nuclei interacting via Electromagnetic fields



P. A. M. Dirac (1929)

“The underlying physical laws necessary for a large part of 
physics and the whole of chemistry are thus completely 
known, and the difficulty is only that the exact application of 
these laws leads to equations much too complicated to be 
soluble”.

Proc. Roy. Soc. (London) A123, 714 (1929).



Born-Oppenheimer Approximation

If I had access to an infinite computer, I would solve H quantum mechanically:

Very small, because MI >> me. Classical term: Ec(RI)

He(ZI, RI)

He(ZI, RI) ΨG(ZI, RI) = EG(Zi, Ri) ΨG(ZI, RI)

Etotal (ZI, RI) = EG(Zi, Ri) + Ec(ZI, RI)

e: Ground state

Etotal  has all the material-specific information except for electronic excitations.
EG is the part that is hard to determine!
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Energy Function: E(di, Zi)

T=0 properties:
Structure: Min Etotal(di, Zi)

{di}

Energy can be written as a Taylor expansion in di’s with
the minimum energy structure as a reference: E0 + ∑ Kijdidj 
+ …

Symmetry principles: E has to have the symmetry of the minimum energy 
structure
Restrictions (symm. properties) on K follow naturally.

Etotal(di,Zi): Hamiltonian governing the motion of nuclei
: Inter-atomic potential
: Force – field    Fi = - ∂Etot / ∂ di

Various external fields coupling with a material: 
Electric field (E), Magnetic Field (H) and Stress (σ)

conjugate material properties:
Electric Polarization (P), Magnetization (M) and strain (ε)
are all related to first derivatives of Etotal with respect to fields.

E

d
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Example: O2 molecule

Bond length

Cohesive 
energy

E=Ec+(1/2) K (d-d0)2

02

2

ddd
EK

=∂
∂

= vibrational frequency
w = √(K/M)



Energy Function: Etotal(di, Zi)=EG+Ec

Second derivative of Etot or F wrt Physical property

di, di (atomic displacement) Force spring const: phonons

E, E (E-field)                                                   Dielectric constant

ε, ε (strain)                                                         Elastic constant

E, ε Piezo-electric constant

E, di Born Dynamical charge

ε, di Strain-phonon coupling

H, H (magnetic field)                                     Magnetic susceptibility

E, H Magneto-electric constant

H, ε Piezo-magnetic constant

T≠ 0 : Etotal → tools of statistical mechanics → free energy F
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Energy: Symmetry Principles
Energy of a system can not change when it is transformed with its 
symmetry. Eg. H2O molecule

Reflection plane σ
E([H2O]) = E (σ .[H2O])

Energy of a system ↔ Hamiltonian of the system: statics and 
dynamics

Derivatives of energy: properties of the system
symmetry restriction on energy symmetry restriction on 

properties!
eg. Dielectric constant of a cubic crystal: εxx=εyy=εzz

of a tetragonal crystal: εxx=εyy ≠ εzz



Energy Function: E(di, Zi) (contd)

F(T, V) = - kBT Log ∫dRI Exp(-Etotal (ZI, RI)/kBT)

T ≠ 0 properties: statistical mechanics
Free energy

Derivatives of Free energy  ↔  Physical properties at finite T

It seems that Etotal should be adequate to determine all the macroscopic
properties of a material!
Except those which involve excitation of electrons (eg. Optical spectra)

Born-Oppenheimer approximation does break down (rarely):
Eg. explosion of RDX under pressure

How to access Etotal(ZI, RI)?

1. Empirical approach: Have Nature solve all the equations!

2. First-principles approach: Have a computer solve all the equations!
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