
Density Functional Theory

Many electron ground state: EG



HISTORY

1920’s: Quantum Mechanics – electronic spectra

1930’s: Thomas-Fermi model: E[n(r)], n(r) ~ homogeneous
Hartree, Hartree-Fock calculations

1940’s: Band-structure calculations: 
OPW (Herring), APW (Slater)

1950’s: OPW-pseudopotentials (JC Phillips); computers!

1960’s: Empirical pseudopotential method (EPM), plane waves
theory – experiments 
Optical spectra problem of solids essentially solved

1964-5: Density Functional Theory (Hohenberg, Kohn, Sham)
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(Nobel prize in Chemistry, 1999).



HISTORY (contd)
1970’s: Applications of EPM-surfaces, crystals,

Self-consistent charge density-bonding
DFT with plane wave (Ihm, ML Cohen)

1980’s: Total energy Approach – ab initio pseudopotentials
→ a variety of material properties
Payne et al, Rev. Mod. Phys. 64, pp 1045-1097 (1992).

Car-Parrinello Molecular Dynamics: thermodynamics
Phys. Rev. Lett. 55, 2471 (1985).  > 4000 citations

1990’s to present: Applications of total energy and CPMD to 
a very wide range of materials and properties
nano-structures, bio-molecules
High-Performance [Parallel] Computing (HPC)

Computational Materials Science: independent approach



He =

Interacting Many Body Problem: He ΨG = EG ΨG

ΨG ( {dI, ZI}, {ri} )

3 Ne variables!

He =  T     +        Vext +        Vint

EG =       -----------------
Min <Ψ| He | Ψ>

<Ψ | Ψ>Ψ
= <T> + <Vint> + ∫ dr Vext (r) n(r) 

Hellman-Feynman force theorem:  c

Dependence on density alone!
(when Ψ is an eigenfunction)

Thomas Fermi model of electrons: E = E[n(r)]

Can EG be related to density alone?   Function of  only 3 variables!

Density Functional Theory



Density Functional Theory

Theorem 1: For any system of electrons in an external potential Vext(r), that 
potential is determined uniquely (within an additive constant) by the 
ground state density n(r).

As a result, the full many body wave function Ψ and derived properties 
are also determined uniquely by n(r).

Theorem 1: A universal functional for the energy EG[n(r)] can be defined for 
all electronic systems. The global minimum of EG[n] for a given Vext(r) gives 
the exact ground state energy and density. 

Exact form of the functional EG[n] is unknown and must be very complicated!

EG [n] can give only the ground state, the excited states need more work.

Hohenberg and Kohn, Phys. Rev. (1964)



How to construct the Density Functional?

Given by Levy and Lieb

EG[n] = 
Min

Ψ
< Ψ | He | Ψ >,  such that   Ψ gives the given density n(r).

= 
Min

Ψ
< Ψ | T + Vint | Ψ >

Clearly, 

+

F[n] is a universal functional of n(r), not depending on Vext.

Kohn-Sham Ansatz: n(r) = ∑ | ψi(r) |2

Map an interacting electron He problem onto an effective non-
interacting problem  Heff = - ½ ∂2 /∂x2+ Veff(r) 

Ts =



Kohn-Sham scheme:

VKS(r) – Vext (r)  = Vint
eff (r, [n(r)]) 

Kohn-Sham energy functional:

Ts

Exc[n(r)] = F [ n(r) ] - (Ts + EHartree )
= (Texact – Ts ) + (Eint – EHartree )

Exc is the functional where the most crucial approximations are absorbed in:
(T and Eint ) in exact form are unknown.

Variation of EKS with respect to ψ’s gives Kohn Sham equations:
(- ½ ∂2 /∂x2 + Veff [n(r)] ) ψi = εi ψi



Local Density of Approximation (LDA) to EXC

Assume that Exc[n] is a sum of contributions from each point in real-space depending
only on the density each point, independent of other points:

Since εxc is assumed to be universal, it could be taken as the same
as that of the homogeneous electron gas of a given density.

Exchange energy εx (n) = -0.458/ rs (Hartree),
rs being the Wigner Seitz radius.

Correlation energy εc (n):

• RPA result: good at high density

• Essentially exact Monte Carlo (Ceperly and Alder, 1980)

•Interpolation between high and low densities: Wigner (1934)



Generalized Gradient Approximation (GGA) to EXC

Assume that Exc[n] is a sum of contributions from each point in real-space depending
only on the density and its gradient each point, independent of other points:

Many forms of GGA available (eg. PBE, PW91, etc):

Increase the magnitude of exchange energy – lower the total energy.

Decrease the magnitude of correlation energy – increases total energy
(smaller in size relative to the change in exchange energy).

,         )

GGA led to improvements in estimation of cohesive, dissociation energies,
and the DFT becoming more widely used in chemistry.

W. Kohn gets Nobel prize in Chemistry (1999).



Kohn-Sham equations:
Minimize EG[{ψi}] with respect to ψi with constraint of
orthonormalization of ψi ‘s.

(- ½ ∂2 /∂x2 + Veff [n(r)] ) ψi = εi ψi

One is tempted to interpret εi’s as electronic energy 
eigenvalues, but indeed they are simply Lagrange’s 
multipliers associated with the ort. Constraint!

Thus, band-gaps given by the difference between 
HOMO and LUMO or conduction and valence band 
energies are not expected to be right.

It is much easier to get the band structure qualitatively 
right, hence DFT also gives is reasonably well.
The main accomplishment of DFT is to get total energy
Correctly.



Note that DFT is not the same as band-structure!

In fact, εi’s  arising in the Kohn-Sham scheme do not have a physical 
meaning, except for the highest occupied state i.

Hence, accurate estimation of band-gaps is not expected. You need 
other techniques (like self-interaction correction or the time-dependent 
DFT). 

Including exact exchange
Is found to have improved
the estimation of band-gaps.
(Staedele, et al). 



Self-consistent
Kohn-Sham Solution

Two spins (general)

O(N3)

nnew = nold?

= nnew

= nold



Kinetic Energy Functionals:

There have been efforts in taking the Hohenberg-Kohn theorem
further in practical applications.

Note that in the Kohn-Sham functional,

Ts

Only Ts is not known as a functional of density!

Many schemes of approximation of Ts[n] are available.
(Burke et al; Carter et al; von Wizsacker et al, etc).

Advantages of this KEF-based approach:
Orbital-free
Linear (O(N)) scaling both in memory and cpu time

Unfortunately,
The approximation of the KEF is not as generally good as one would like…
It is also coupled with a problem of having a good representation of core 
and valence electrons.



Limitations of Available Density Functionals

LDA/GGA do not capture vdW interactions and forces

Strongly correlated systems, such as Mott insulators, High Tc s/c, etc
Width of bands of d-states are over-estimated

Lattice constants (LDA) underestimated by 2 %

Cohesive energies (LDA) overestimated by 20-40 % (better with GGA)

Magnetic couplings are overestimated

Electronic dielectric constant is overestimated by 20 %

Caution!

Band gaps are not supposed to be correct in DFT band structure



(2n+1) Theorem (Gonze and Vigenron, 1989):

For a given change small change in potential parameterized by λ,
Kohn-Sham solution (both wave-functions and energy) can be expanded 
in
powers of λ: (…) λ + (…) λ2 + (…) λ3+ …

Knowledge of Kohn-Sham wavefunctions up to order n is adequate to 
yield Kohn-Sham energy up to order (2 n + 1).

nth order contribution (ψ, E) = nth derivative of (ψ, E) with respect to λ



n=0: Ground state Kohn-Sham solution

2 n +1 = 1: All first derivatives of EG can be obtained from the 
ground state ψ’s.

Example: 1. Hellman-Feynman forces on atoms (deriv. wrt atomic position)
2. Stress on the crystal (deriv. wrt strain)
3. Magnetization (deriv. wrt magnetic field)
4. Electric polarization (deriv. wrt electric field)

n=1: Kohn-Sham DFT Linear Response

2 n +1 = 3: All second and third derivatives can be obtained from the
first order (linear response) ψ’s.

Examples: 1. Force constant matrices
2. Elastic constants
3. Dielectric constant
4. All the mixed second derivatives like piezoelectric const.

5. Raman tensor (third deriv. wrt atomic position, E, E).

(HKS
0-εi

0) ψi
1 = (HKS

1-εi
1) ψi

0



A note on electric polarization

Dipole moment: μ = ∫r ρ(r) dr,
Polarization P defined as dipole moment per unit volume can 
not be determined from charge density of a periodic crystal.

One has to use the geometric phase based theory of polarization,
which determines P through Kohn-Sham Bloch functions.

n

P = = i e/(2π)3 ∑n∫ <ukn | d/dk | ukn> dk = (1/V) ∑n γn

i

Because of the subtlety of electric potential = - e E x, that operator x
breaks the periodicity and can not be taken expectation value of,
it is quite hard to treat nonzero electric field in periodic DFT studies. 

Perturbatively however, one can determine effects of electric field,
such as dielectric constant, etc.



Linking Kohn-Sham wave functions to bonding:

Crystal Orbital Overlap Population (R. Hoffman)

-ve: anti-bonding character, +ve: bonding character between two
orbitals I and j, at an energy e.

Wannier Functions: Localized description of Kohn-Sham functions in
a crystal:

Phase factors Θ’s chosen to ensure maximum localization!

Bond Orbital Overlap Population:

Contribution of different atomic orbitals (l, m) to bonding I:
a real-space picture of bonding

MoO3

Si



Topological Analysis (Bader) of charge density
and of Electron Localization Function (ELF) (Silvi and Savin, 94):

ELF: Measure of another electron of the same spin to be localized near 
the reference point.

Exhibits shell structure for atoms 
and molecules.

Critical points of the density and 
ELF can be used to define bonds

Linking Kohn-Sham wave functions to bonding (contd):

BiAlO3
(Thanks to 
Ram Seshadri)



• Ψkn(x,y,z) (largest in size α N2
atom)

Band index n = 1, Ne

Bloch vector k = 1, M (size of the periodic supercell)
x,y,z  inside a unit cell

• ρ(x,y,z), V(x,y,z) 
(size α Natom)

Main Data Sets in a DFT calculation

Kohn Sham Equations: H ψkn = Єknψkn

Eigenvalue problem

Method of solution depends on how you represent ψkn’s:
* basis set:

Plane wave (eiG.r): H is not sparse
Localized orbitals (eg. Gaussian): H is sparse

* represent on a grid: H (kinetic energy) is sparse 



Parallelization: I

O(N3)

O(N2)

O(N2logN)

O(N2)

O(NlogN)
O(N)



Parallelization II

Largest length scale > unit cell

Smallest length scale << unit cell

Band indexΨkn(x,y,z)



DFT-based Molecular Dynamics

- Classical Molecular Dynamics of ions
- Force (Hellman Feynman) field and energy are determined from DFT    
calculation on the fly

Ab Initio MD (AIMD):
A self-consistent DFT solution is obtained at a given set of ionic positions.
Hence, the forces are very accurate, trajectory of ions is “exact”.

Car Parrinello MD (CPMD):
Electrons are also treated through a fictitious dynamics by defining a
Lagrangian for parameters that define Kohn-Sham wave functions.
At a given step/configurations, Kohn-Sham wave functions are 

approximate solutions, hence less accurate forces than AIMD.

However, the ionic trajectory remains in the neighborhood of the exact
one in a stable way. 

As a result, CPMD is usually faster than AIMD.

Thermodynamic simulations of materials.



Various methods and codes based on DFT

1. All-electron vs. Valence electrons-only codes:
In the former, the entire electronic Hamiltonian is solved where as in
the latter, the interaction between core electrons + nucleus  and valence 
electrons is treated using a pseudopotential.
Note that pseudopotential is the second biggest approximation in most
common DFT calculations.

2. Basis Set vs. Grid-based codes:
In the former, Kohn-Sham wave functions are written in terms of basis 
functions, while they are represented on a mesh or a grid in the latter.

All Electron codes: Stuttgart-LMTO, FP-LAPW (WIEN-2K),
HARES,  TOMBO mixed basis, FPLO

Pseudopotential codes:
ABINIT, QUANTUM-ESPRESSO, FHI98MD,  SOCORRO,

CPMD, CASTEP, vasp,
SIESTA, HARES



Concept of a pseudopotential

• Core electrons eliminated: 
1s2, 2s2, 2p6

• Smoother valence wave-functions:  

Nodes eliminated easier to represent
3s2 3p2  

• Smoother, shallow potentials

Element of Art:

Choice of rc

Choice of valence states

Eg. Si:
1s2, 2s2, 2p6, 3s2, 3p2



•All Electron DFT calculations are more accurate than the pseudopotential -
based ones (assuming both done numerically well). 

•A pseudopotential has to be tested in a well-known chemical environment 
close to what you may be interested in. It should give results idential/close to 
the results of AE calculations, wherever available.

•Localized basis (like in Siesta) give a sparse matrix representation of the KS 
hamiltonian, hence lead to very efficient [O(N)] methods; unfortunately the 
basis set has to be chosen with a lot of care and tested.

•Plane wave basis is most unbiased, in the sense that it is not dependent on 
a system of study. They allow very fast computation of forces and hence are 
most commonly used in the DFT-based MD codes. They are always used 
along with pseudopotentials to keep the size of the basis set in practical 
limits.

•Grid-based (or localized orbitals) codes are easy to parallelize by distributing 
the large data-set on different compute nodes.



When to use which code? *

* Note that this may not be exhaustive and should be used as a guideline!

A complex material with many atoms per cell and structural parameters,
Determination of structure, other simple ground state properties:
- PWSCF/ESPRESSO with ultra-soft pseudopotentials or VASP

Relatively simple materials, dielectric, other nontrivial properties, constrained 
Structural determination:
ABINIT, PWSCF/ESPRESSO

Full phonon dispersion and thermodynamic modeling:
ABINIT, PWSCF; SIESTA+VIBRA

Electronic structure of complex oxides, insights into bonding, coupling
to tools for strong corrlation:
FP-LMTO (Stuttgart)

Very large systems, determination of structure from a not-so-good guess:
SIESTA

Optimally, use a combination of methods: cross-checking, efficiency 



First-principles Density Functional Theory
based calculations:

Inputs: Atomic numbers and Atomic masses
and candidate structures

Output: Total energy, its derivatives (eg. Forces)
→ Structure, Electronic structure
→ Various properties
→ Molecular Dynamics: thermodynamics

SUMMARY



Error

Cost

Accuaracy

Computational

optimal



Direct use of first-principles DFT energy function
in MD or Monte Carlo Simulations is often expensive.

Example, a DFT total energy calculation of a system with 200 
atoms takes about 1 day on a 64-bit cpu (2010)

More importantly, a brute force simulation may not give much
insights into the physics/chemistry of the material

Modeling is a good idea!



Ab Initio
Modeling

Energy, forces

Ab Initio MD, 
Monte Carlo

I Ab Initio
Approaches



II Hybrid Approaches: Quasicontinuum Methodology

Atomistic 
treatment

Continuum
treatment

Limitations: No dynamics, finite Temperature
http://www.qcmethod.com/

The main input: Etotal

First-principles
methodology

Coarse-grained Etotal



III Use of phenomenological theories
with first-principles Etot for a few
key configurations as input

Properties such as ductility vs brittleness
- dislocation nucleation, motion

stacking fault energies
- Griffith criterion for Brittle failure

surface energies

Search of new materials:
- Too many possibilities
- Use a few microscopic indicators



Summary

DFT-based simulations or more generally computational materials science 
have now become a powerful way of doing science, like experimental 
and theoretical approaches.

Experimentalists still make decisions on “What is right”
and make the major new discoveries!



Beyond density functional theory

1. Time-dependent density functional theory: excited electronic states, 
transport, better description of correlation, etc.

2. Dynamical Mean Field Theory: treating electron correlations more 
accurately, understand trends in the properties of  strongly correlated 
materials

3. Many body theory (pert) based corrections to DFT: energy gaps are 
estimated accurately.

4. Quantum Monte Carlo: essentially exact solution of many e problem

5. Non-equilibrium Green function: transport properties of molecules, 
nano…

6. Meta-dynamics: expand the time-scales achievable with AIMD or CPMD



Useful Resources

Links to all sorts of softwares relating to Density Functional Theory:
http://electronicstructure.org/software.asp

Time dependent density functional theory:
http://www.tddft.org/

Symmetry and Crystallography of materials: 
http://www.cryst.ehu.es/

Quantum Monte Carlo Methods:
http://www.tcm.phy.cam.ac.uk/~mdt26/cqmc.html

Numerical Methods/Recipes:
http://www.nr.com/

http://electronicstructure.org/software.asp�
http://www.tddft.org/�
http://www.cryst.ehu.es/�
http://www.tcm.phy.cam.ac.uk/~mdt26/cqmc.html�
http://www.nr.com/�
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Phase Transitions, Symmetry Breaking:
Landau Theory
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Change in symmetry at Tc:

inversion symmetry broken in (a)
time reversal symmetry broken in (b)

Low-T state is connected with the high-T state: 
order parameter P and M.

Landau free energy: G = G0 + A (T-Tc)P2 + B P4

(b)
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T < Tc

T = Tc

T > Tc
G

P

Landau Theory [phenomenology]:
Form of the free energy G is completely determined
by symmetry. 

02

21
PPP

G
=∂

∂
=

ε
ε

Tc
T

Near a transition, susceptibility diverges: important to technology
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