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Appendix: surface scattering in a quantum well 

Here we consider surface roughness scattering in the quantum well with confinement 

along the z axis, transport direction x and the unconfined transverse dimension y. 

We start with the semi-classical expression for the rate of surface roughness scattering1. 

The square of the Hamiltonian for scattering normalized per area with sizes xL  and yL  is  

 ( )2 2
, ' ( ' ) /k k x yH M Y k k L L= −  (1) 

is expressed via the square of the matrix element (with the units of (J*m)2) , which is for 

small2 and large3 quantum well thickness wL , respectively, 
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where the correlation length is Λ , the roughness r.m.s. is ∆ , and the effective normal 

field at interface is sF , and the carrier confinement mass is *m . And the dimensionless 

factor in the Fourier transform of the roughness correlation function can have, for 

example, of Gaussian form 
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 (3) 

Then the total rate of scattering of the of electrons with in-plane momentum k  to all 

possible final momenta 'k  is then given by the Fermi’s golden rule 
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Now we can substitute the Hamiltonian and use the representation of the sum over the 

momentum states as an integral 
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Then the scattering rate becomes 
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This rate should be distinguished from the momentum relaxation rate. 
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Here the exchange of in-plane momentum is 'q k k= − , and θ is the angle between the 

momenta ',k k . By expressing the differential of energy via the momentum magnitude 
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where dm  is the density-of-states mass. Performing the integral over energies which 

results in a unity factor 
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Note that for small correlation length ( ) 1Y q = (isotropic scattering), the last factor in the 

above equation turns to unity, and the total scattering rate becomes equal to the 

momentum relaxation rate.  

This limit is valid when most of electrons have momentum such that 1kΛ . For non-

degenerate carriers, the momentum is given by the thermal velocity 

 2 120 /B
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and thus the momentum is 



 4

 10.2d tm vk nm−= ≈ . (11) 

Therefore the approximation valid to a correlation length of a couple of nanometers. 

The part of mobility limited by surface roughness scattering contains the averaged 

scattering time and the conductions mass cm  

 m
srs

c

e
m
τ

µ = . (12) 

For sufficiently wide quantum wells, one retrieves the well-known ‘universal mobility’ 

dependence 
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In the isotropic limit the scattering rate is 
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And the mobility becomes 
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We see that mobility decreases with correlation length in the isotropic limit  
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In the opposite limit of long correlation length, the angle-dependent factor 
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And therefore mobility increases with correlation length.  

 µ ∝ Λ . (18) 

The intuitive explanation for this is that when the correlation length is longer than the 

wavelength of electrons, they are able to adiabatically adjust to the changes in the 

waveguide width and not to experience scattering. 

When fitting the experimental data, the r.m.s. roughness and the correlation length are not 

well know. Therefore it is necessary to fit the value of mobility, which is easier to obtain. 

For example, for electrons in silicon, 0.5nm∆ = ,  2nmΛ = , and 1 /sF MV cm= would 

produce scattering rate of  1 142.0 10 / sτ − = ⋅  and mobility 
2

44iso
cm
V s

µ =
⋅

. 

Now we draw the connection between the semi-classical scattering rate and the full 

quantum description via NEGF. In the NEGF formalism, the surface scattering has the 

form of the broadening function for elastic process with transfer of momentum expressed 

via the spectral function, that is  

1( , ', , ', ) ( ) ( , ' , , ' , )x x y y s x x x x y y y y
qx y

k k k k E K Y q A k q k q k q k q E
N N

Γ = + + + +∑   
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(19) 

Here we separated the scattering prefactor [which is determined by Eq. (77) of Ref.4] into 

a constant sK (with units of J2) and the dimensionless factor of the correlation function 

( )Y q . 

For 2-dimensional systems, the spectral function A  

 ' 2 '( ) ( )k D k x yA E g E a aπ= . (20) 

Is related to the local density of states (LDOS)  
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Taking the special case of isotropic scattering, we can obtain the relation between the 

constants which is valid for the general case. In this case the scattering broadening 
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On the other hand the broadening is related to the scattering rate  
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A comparison of these expressions demands that 
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Now we need to transform the broadening function and the spectral function to real 

coordinates along the transport direction x according to Eqs. (63) and (64) of Ref. 4  

 ( )1 2 1 2
, '

1( , ) ( , ') exp 'x x x x
kx kxx

x x k k ik x ik x
N

Γ = Γ −∑  (25) 

 ( )3 4 4 3
3, 4
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A k k A x x ik x ik x
N

= −∑  (26) 

Upon substitution of these equations to (19), performing summation over momenta 

according to the identity 

 ( )1 3 1 3( , ) expx x x
kx

N x x ik x ik xδ = −∑ , (27) 

and performing summation with Kronecker delta symbols under the sums, we obtain 

( )1 2 1 2 2 1( , , , ', ) ( ) ( , , , ' , )exps
y y y y y y x x

qx y

Kx x k k E Y q A x x k q k q E iq x iq x
N N

Γ = + + −∑ ,(28) 

At this point we neglect correlations between the transverse momenta, and treat them as a 

set of independent modes by dropping the second momentum variable in all functions as 

follows 1 2( , , , )yx x k EΓ . Taking advantage of the fact that this particular form of the 

roughness correlation admits splitting into a product ( ) ( ) ( )x yY q Y q Y q= , we can perform 

summation over the transferred x-momentum  
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Now we would like to perform summation over the transverse momenta and will limit 

ourselves to cases where the Green’s function is approximately independent of the 

transverse momentum (and thus can be taken out of the summation). Then the summation 

over transferred y-momentum is performed similarly, to yield 

 
( )2

2 1
1 2 1 22 2( , , ) exp ( , , )x ys

x y

L L x xKx x E A x x E
N N π

⎛ ⎞−
Γ = −⎜ ⎟⎜ ⎟Λ Λ⎝ ⎠

. (30) 

Not surprisingly, the broadening function contains the spatial correlation function of 

roughness. However with this dependence the broadening, self-energy matrices, as well 

as the whole NEGF equations become strongly non-diagonal. Instead of the desired one 

sub-diagonal and one super-diagonal, their number is equal to the ratio of the correlation 

length and the spatial grid size / xaΛ , which can be >30. That would drastically increase 

the computational burden of solving these equations. In order to approximate the reality 

by diagonal equations, we make a not-well-justified by useful assumption that the off-

diagonal terms are close to diagonal    

 1 2 1 1( , , ) ( , , )A x x E A x x E≈ . (31) 

Here we sum off-diagonal terms  
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and place all the contributions into the the diagonal one: 

 1 1 1 1( , , ) ( , , )sx x E K A x x EΓ = . (33) 

Where the factor used in the nanoMOS simulator is 

 
2

s
x

MK
a π

=
Λ . (34) 

This results in a convenient expression for surface scattering which can be tested against 

other simulation methods. For the above roughness parameters and 0.4xa nm=  one 

obtains the constant ( )20.022sK eV= . Note that in the case when one of the transverse 

dimensions is confined, the rates of scattering between various subbands must contain the 

formfactors, as described in Ref. 4. 
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