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 Is the effective tip sample force vs. tip-sample
separation (or indentation)

Examples:

 Usually d=0 chosen at min force
 d<0 indentation, d>0 separation
 Unfortunately, this is not what

we measure directly in AFM

F-d curve
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 Z is the Z-piezo displacement, δ is the cantilever   
bending, tip-sample force is Fts=kcantδ

AFM’ s measure Fts vs. Z !!

 How to convert force-displacement (F vs Z) to       
force distance (F vs d) and vice versa?
 Collect F-Z data and for every F value, evaluate d=

Z+δ, to within an arbitrary constant

F-Z curve – what we measure in AFM
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The microcantilever – the force sensor

 From elementary beam theory, if E=Young’s modulus, 
I=bh3/12 then

 δ=w(L)=F L3/(3EI), and θ=dw(L)/dx=FL2/(2EI)

 Deflection and slope linearly proportional to force 
sensed at the tip

 k=3EI/L3 is called the bending stiffness of the 
cantilever

www.olympus.co.jp
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 Understanding internal resultants      
(shear force, bending moment and     
axial  force in a beam)

Classical beam theory
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V(x) :Internal shear force (N)
F(x): Internal axial force (N)
M(x): Internal bending moment (N.m)

M(x) V(x)

F(x)



Key Equation Applied Load Derivation 

p(x)   N/m
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Classical beam theory
 Relationship between V(x) and M(x)
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Classical beam theory- stress/strain
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Classical beam theory
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Classical beam theory
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Classical beam theory
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Photodiode

Laser

The four-quadrant photodiode

a) Vertical bending

Up

Down

A+B= UP

C+D=DOWN

b)Lateral/torsion motion

Right

left A+C= LEFT

B+D=Right

Courtesy- J. Gomez-Herrero, UAM, Spain

Commercial AFMs measure the rotation angle!!! (bending or torsion)
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AFM Block Diagram
Personal Computer

SPM Signals

HV Amplifiers and 
signal conditioning

Piezoelectric 
scanner

SFM 3 dimensional image of a 
tumor cell HeLa (37x37µm2)

Digital Signal
Processor
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 How do d* and δ change as Z is reduced      
during approach and then retracted?
 Note that technically                      but tip  

height is basically an arbitrary constant 

Equilibrium positions during approach   
and retraction
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d=0
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δ=d*-Z

*d Z Tipheightδ = − −



 With soft cantilevers ( small k) it is not  possible to         
measure entire ‘d’ range 14

Z d*
Fts(d*)

δ=d*-Z

k(d*-Z)

Cantilever instabilities during approach   
and retraction
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 Note that hysteresis occurs in the δ-Z curve between       
approach and retraction even though Fts(d) in conservative

F-d to F-Z conversion
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Some examples of F-d to F-Z conversions

 Note that F-Z force hysteresis does not mean that the  F-d   
is  hysteretic (non-conservative)

 F-Z to F-d is actually non-unique when there is hysteresis in 
F-Z!!
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Z Z Z Z
slope=kcant

Adapted from Butt, Kappl, Cappella, in reader
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d
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Conversely: F-Z to F-d conversion
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d

Force-distance curve Fts

 In a typical δ-Z experiment in AFM, the cantilever approaches/retracts 
from the sample while recording the cantilever deflection. 

 However in force spectroscopy we are interested in converting this to a 
force-distance curve i.e. Fts vs. d. How to convert?

deflection-displacement curve 

Z
Snap-in

Pull-off

δ

Fts=kδ d=δ+Z

 Important: d is only known to within an arbitrary constant!

(δ, Z)



Convert   deflection vs. displacement curves to   force vs. distance (gap) curves

Force spectroscopy – an example 

Piezo displacement Z (nm) Tip-sample distance d (nm)

Often  d axis is recentered  to zero where force is a minimum



Next class
 Practical aspects of force distance       

curves
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