Lecture 9 Force distance curves I

Arvind Raman Mechanical Engineering Birck Nanotechnology Center

- How to convert force-displacement (F vs Z) to force distance (F vs d) and vice versa?
- Collect F-Z data and for every F value, evaluate d= Z+δ, to within an arbitrary constant

The microcantilever – **the force sensor**

- From elementary beam theory, if $E=Young's$ modulus, $I=bh³/12$ then
- \bullet δ =w(L)=F L³/(3EI), and θ =dw(L)/dx=FL²/(2EI)
- Deflection and slope linearly proportional to force sensed at the tip
- $k=3E1/L^3$ is called the bending stiffness of the cantilever

Classical beam theory

Understanding internal resultants (shear force, bending moment and axial force in a beam)

A

x

X

Y

Classical beam theory P Relationship between $V(x)$ and $M(x)$

Example 1
\n
$$
E \text{A} \text{A} \text{A} \text{A} \text{A} \text{B} \text{O} \text{C}
$$
\n
$$
E \text{A} \text{A} \text{B} \text{C} \text{A} \text{C}
$$
\n
$$
E \text{A} \text{C} \text{A} \text{C} \text{A} \text{C}
$$
\n
$$
= \rho_0 \Rightarrow \frac{d^3 w(x)}{dx^3} = \frac{\rho_0}{E} x + c_1
$$
\n
$$
\Rightarrow \frac{d^2 w(x)}{dx^2} = \frac{1}{2} \frac{\rho_0}{E} x^2 + c_1 x + c_2 \Rightarrow \frac{dw(x)}{dx} = \theta(x) = \frac{1}{6} \frac{\rho_0}{E} x^3 + \frac{1}{2} c_1 x^2 + c_2 x + c_3
$$
\n
$$
w(x) = \frac{1}{24} \frac{\rho_0}{E} x^4 + \frac{1}{6} c_1 x^3 + \frac{1}{2} c_2 x^2 + c_3 x + c_4
$$

Boundary conditions

$$
w(0) = \theta(0) = 0 \quad EI \frac{d^2 w(L)}{dx^2} = EI \frac{d^3 w(L)}{dx^3} = 0
$$

(no point moments or force applied at $x = L$)

$$
\Rightarrow c_3 = c_4 = 0, c_1 = -\frac{p_0 L}{EI}, c_2 = \frac{1}{2}\frac{p_0 L^2}{EI}
$$

$$
w(L) = \delta = \frac{1}{8}\frac{p_0 L^4}{EI}, \quad \theta(L) = \theta = \frac{1}{6}\frac{p_0 L^3}{EI} \Rightarrow \frac{\theta}{\delta} = \frac{4}{3}L
$$

PURDUE

Classical beam theory F Example2 **F** Example 2

$$
EI\frac{d^4w(x)}{dx^4} = 0 \Rightarrow \frac{d^3w(x)}{dx^3} = C_1 \Rightarrow \frac{d^2w(x)}{dx^2} = C_1x + C_2
$$

$$
\Rightarrow \frac{dw(x)}{dx} = \theta(x) = \frac{1}{2}C_1x^2 + C_2x + C_3
$$

$$
w(x) = \frac{1}{6}c_1x^3 + \frac{1}{2}c_2x^2 + c_3x + c_4
$$

Boundary conditions

$$
w(0) = \theta(0) = 0 \quad \text{E1} \frac{d^2 w(L)}{dx^2} = 0 \quad \text{E1} \frac{d^3 w(L)}{dx^3} = -F
$$
\n(no point moment applied at $x = L$)

\n
$$
\Rightarrow c_3 = c_4 = 0, c_1 = -\frac{F}{EI}, c_2 = \frac{FL}{EI}
$$

$$
w(L) = \delta = \frac{1}{3} \frac{FL^3}{EI}, \quad \theta(L) = \theta = \frac{1}{2} \frac{FL^2}{EI} \Rightarrow \frac{\theta}{\delta} = \frac{2}{3}L
$$

 $F = k\delta$, where $k = \frac{3EI}{\epsilon^3}$ is the static bending stiffness of the cantilever 3 $=$ $k\delta$, where k = *L* 3 **IVERSITY**

Commercial AFMs measure the rotation angle!!! (bending or torsion)

AFM Block Diagram

Equilibrium positions during approach and retraction

- \blacksquare How do d* and δ change as Z is reduced during approach and then retracted?
- Note that technically $\delta = d^* Z T$ ipheight but tip height is basically an arbitrary constant

Note that hysteresis occurs in the δ -Z curve between approach and retraction even though $F_{\text{te}}(d)$ in conservative

Conversely: F-Z to F-d conversion

- In a typical δ -Z experiment in AFM, the cantilever approaches/retracts from the sample while recording the cantilever deflection.
- However in force spectroscopy we are interested in converting this to a force-distance curve i.e. F_{ts} vs. d. How to convert?

Force spectroscopy – an example

Convert deflection vs. displacement curves to force vs. distance (gap) curves Approach Approach 3.5 3 20 2.5 15 Deflection (nm) Force (nN) 10 1.5 0.5 -0.5 $-10\frac{L}{2}$ -16 1.5 -1.5 -0.5 0.5 -1 0 -2 **Piezo displacement Z (nm) Tip-sample distance d (nm)**

Often d axis is recentered to zero where force is a minimum

Practical aspects of force distance curves

