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How to Model the Repulsive Interaction    
at Contact?
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Source: Capella & Dietler

Maybe if the contact area involves tens or hundreds    
of atoms the description of net repulsive force     
is best captured by continuum elasticity models

Atom-Atom? Sphere-Plane?
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Contact?
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What we want to know

Nature of the contact - reversible (elastic)?    
hysteretic?

Contact radius (contact area) as function of     
applied force

Any deformation?

Pull-off force (adhesion force)

What determines all these quantities?



Continuum description of contact - history
 Hertz (1881) takes into account neither surface forces nor adhesion,     

and  assumes a  linearly elastic sphere indenting an elastic surface
 Sneddon’s analysis (1965) considers a rigid sphere (or other rigid           

shapes) on a linearly elastic half-space.  
 Neither Hertz or Sneddon consider surface forces discussed in             

last lecture.
 Bradley’s analysis (1932) considers two rigid spheres interacting via the            

Lennard-Jones 6-12 potential
 Derjaguin-Müller-Toporov (DMT, 1975) considers an elastic sphere with 

rigid  surface but includes van der Waals forces outside the contact      
region. Applicable to stiff samples with low adhesion.

 Johnson-Kendall-Roberts (JKR, 1971) neglects long-range interactions o
utside contact area but includes short-range forces in the contact area.  
Applicable to soft samples with high adhesion.

 Maugis (1992) theory is even more accurate – shows that JKR and DMT 
are limits of same theory
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Tip-sample Interaction Models

 From the Derjaguin approximation for rigid tip interacting with rigid        
sample we have

 Real tips and samples are not rigid. Several  theories are used to better  
account for this fact (Hertz, DMT, JKR)

 * These theories also apply to elastic samples, they are just  shown on      
rigid sample to demonstrate key quantities clearly. For example D is        
the combined tip-sample deformation in (b) 
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 Work of adhesion and cohesion: work done to separate unit   
areas of two  media 1 and 2 from contact to infinity in           
vacuum. If 1 and 2 are different then W12 is the work of       
adhesion; if 1 and 2 are the same then W11 is the work of      
cohesion. Think vdW’s whenever you see work of                    
adhesion/cohesion.

 Surface energy: This is the free energy change γ when the      
surface area of a medium is increased by unit area. Thus 

 While separating dissimilar materials the free energy change 
in producing an “interfacial” area  by unit area is known as     
their interfacial energy 

 Work of adhesion in a third medium

I. Surface energies - notation
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http://www-materials.eng.cam.ac.uk/mpsite/interactive_charts/stiffness-density/NS6Chart.html
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II. What is the “Stiffness” of the Tip/Substrate?
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Example
Hertz contact:  Rtip = 30 nm; Fapp= 1 nN

Etip=Esub=200 Gpa; Poisson ratio = νtip=vsub=0.3=v 
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Contact forces: Maugis’ Theory
a: normalized contact radius
δ: normalized penetration
P: normalized force

Penetration

Penetration

D. Maugis, J. Colloid Interface Sci.150, 243 (1992)
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Validity of different models – converting measured 
adhesion force to work of adhesion



Comments on these theories

 JKR predicts infinite stress at edge of contact circle.
 In the limit of small adhesion JKR -> DMT
 Most equations of JKR and Hertz and DMT have been  

tested experimentally on molecularly smooth surfaces   
and found to apply extremely well

 Most practical limitation for AFM is that no tip is a      
perfect smooth sphere, small asperities make a big      
difference.

 Hertz, DMT describe conservative interaction forces, 
but in JKR, the interaction itself is non-conservative    
(why?) …for a force to be considered conservative it   
has to be describable as a gradient of potential energy.
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Combining van der Waals force & DMT contact

A : Hamaker constant (Si-HOPG)
R : Tip radius 
E* : Effective elastic modulus
a0 : Intermolecular distance

Rtip=Si

a0 =r*

sample = HOPG

z

Raman et al,  Phys Rev B (2002),  Ultramicroscopy (2003) 17

Presenter
Presentation Notes
1. To model tip surface interaction we use van der Waals forces when tip is separated from the sample - A is Hamaker constant, R is tip radius, and z is tip-sample gap.
2. And when tip contacts the sample we use the DMT contact model shown here where  E* is the effective elastic modulus.
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