Lecture 8

Introduction to Contact Mechanics

Ron Reifenberger Birck Nanotechnology Center Purdue University

How to Model the Repulsive Interaction at Contact? Contact?

Atom-Atom? Sphere-Plane?

Source: Capella & Dietler

Maybe if the contact area involves tens or hundreds of atoms the description of net repulsive force is best captured by continuum elasticity models

What we want to know

Nature of the contact - reversible (elastic)? hysteretic?

Contact radius (contact area) as function of applied force

Any deformation?

Pull-off force (adhesion force)

What determines all these quantities?

Continuum description of contact - history

- Hertz (1881) takes into account neither surface forces nor adhesion, and assumes a linearly elastic sphere indenting an elastic surface
- Sneddon's analysis (1965) considers a rigid sphere (or other rigid shapes) on a linearly elastic half-space.
- Neither Hertz or Sneddon consider surface forces discussed in last lecture.
- Bradley's analysis (1932) considers two rigid spheres interacting via the Lennard-Jones 6-12 potential
- Derjaguin-Müller-Toporov (DMT, 1975) considers an elastic sphere with rigid surface but includes van der Waals forces outside the contact region. Applicable to stiff samples with low adhesion.
- Johnson-Kendall-Roberts (JKR, 1971) neglects long-range interactions o utside contact area but includes short-range forces in the contact area. Applicable to soft samples with high adhesion.
- Maugis (1992) theory is even more accurate shows that JKR and DMT are limits of same theory

Tip-sample Interaction Models

Rigid tip-rigid sample Deformable tip and rigid sample*

From the Derjaguin approximation for rigid tip interacting with rigid sample we have

 $F_{\text{tip-sample}}(r^*) = F_{\text{adhesion}} = 2\pi R_{\text{tip}}U(r^*) \approx 2\pi R_{\text{tip}}W_{132} = 2\pi R_{\text{tip}}(\gamma_{13} + \gamma_{23} - \gamma_{12})$

- Real tips and samples are **not** rigid. Several theories are used to better account for this fact (Hertz, DMT, JKR)
- * These theories also apply to elastic samples, they are just shown on rigid sample to demonstrate key quantities clearly. For example D is the **combined** tip-sample deformation in (b)

I. Surface energies - notation

- Work of adhesion and cohesion: work done to separate unit areas of two media 1 and 2 from contact to infinity in vacuum. If 1 and 2 are different then W_{12} is the work of adhesion; if 1 and 2 are the same then W_{11} is the work of cohesion. Think vdW's whenever you see work of adhesion/cohesion.
- Surface energy: This is the free energy change γ when the surface area of a medium is increased by unit area. Thus $W_{11} = 2y_1$
- While separating dissimilar materials the free energy change in producing an "interfac i al" area by unit area is known as their interfacial energy 3

$$
W_{12} = \gamma_1 + \gamma_2 - \gamma_{12}
$$

Work of adhesion in a third medium

II. What is the "Stiffness" of the Tip/Substrate?

Standard results

$$
Contact radius a:\n
$$
a_{Hertz} = \left(\frac{R_{tip}F}{E_{tot}}\right)^{\frac{1}{3}} a_{DMT} = \left(\frac{R_{tip}(F + 2\pi R_{tip}W_{132})}{E_{tot}}\right)^{\frac{1}{3}}
$$
\n
$$
B_{JKR} = \left(\frac{R_{tip}(F + 2\pi R_{tip}W_{132} + \sqrt{6\pi R_{tip}W_{132}F + (3\pi R_{tip}W_{132})^2})}{E_{tot}}\right)^{\frac{1}{3}}
$$
$$

Deformation D:

UNIVERSITY

$$
D_{\text{Hertz}} = \frac{a^2}{R_{\text{tip}}} = \left(\frac{F^2}{R_{\text{tip}}E_{\text{tot}}^2}\right)^{1/3} \qquad D_{\text{DMT}} = \frac{a^2}{R_{\text{tip}}} = \left(\frac{\left(F + 2\pi R_{\text{tip}}W_{132}\right)^2}{R_{\text{tip}}E_{\text{tot}}^2}\right)^{1/3}
$$
\n
$$
D_{\text{JKR}} = \frac{a^2}{R_{\text{tip}}} - \frac{2}{3}\sqrt{\frac{6\pi W_{132}a}{E_{\text{tot}}}}
$$
\n
$$
\frac{1}{E_{\text{tot}}} = \frac{3}{4}\left(\frac{1 - v_s^2}{E_s} + \frac{1 - v_t^2}{E_t}\right) = \frac{3}{4}\frac{1}{E_s}.
$$
\nEXAMPLE: Source: Butt, Cappella, Kappl

\nSometimes $E_{\text{tot}} = \frac{4}{3}E^*$

Standard results (cont.)

Pull-off Force F:

$$
F_{adhesion}^{Hertz}=0
$$

$$
F_{\text{adhesion}}^{\text{DMT}} = 2\pi R_{\text{tip}} W_{132}
$$

$$
F_{\text{adhesion}}^{\text{JKR}} = \frac{3\pi}{2} R_{\text{tip}} W_{132}
$$

Source: Butt, Cappella, Kappl 9

Example

Hertz contact: $R_{tip} = 30$ nm; $F_{app} = 1$ nN $E_{\text{tib}}=E_{\text{sub}}=200$ Gpa; Poisson ratio = $v_{\text{tip}}=v_{\text{sub}}=0.3=v$ $\left(1-v_{sub}^{2} \right)$ $1-v_{tip}^{2}$ $31-v_{up}$ $=\frac{3}{4}\left|\frac{1+v_{sub}}{\sqrt{2}}+\frac{v_{tip}}{\sqrt{2}}\right|=$ $\begin{pmatrix} E_{sub} & E_{tip} \end{pmatrix}$ $=\frac{3}{2}$ $\frac{0.91}{0.00000}$ $=\frac{1.365}{0.00000}$ $\Rightarrow E_{tot}$ = 146.5 1 $3(1 - v_{sub}^2 - 1 - v_{tip}^2)$ $31 - v^2$ 4 $E_{\textit{\tiny sub}}$ $E_{\textit{\tiny tip}}$) 2 $\frac{2}{2} \frac{9.84}{(200\,\text{GPa})} = \frac{1.8886}{200\,\text{GPa}} \Rightarrow E_{tot} = 146.5\,\text{GPa}$ sub \pm $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\begin{array}{ccccc} E_{\mathit{tot}} & 4 \left(& E_{\mathit{sub}} & E_{\mathit{tip}} & \end{array} \right)$ 2 E *GPa* 200*GPa* **60 nm**

Contact radius:

$$
a_{Hertz} = \left(\frac{R_{tip}F}{E_{tot}}\right)^{\frac{1}{3}} = 0.59 \text{ nm}
$$

Deformation:

$$
D_{Hertz} = \frac{a^2}{R_{tip}} = \left(\frac{F^2}{R_{tip}E_{tot}}\right)^{1/3} = 12 \text{ pm}
$$
 Pull-off Force=0
Context Pressure: $P \approx \frac{F}{\pi a^2} = 0.9 \text{ GPa} \approx 9000 \text{ atmos.}$

π *Hertz*

$$
F_{ts}(d) = \begin{cases} -\frac{HR}{6d^2}, & d > a_o\\ -\frac{HR}{6a_o^2} + \frac{4}{3}E^* \sqrt{R(a_o - d)^{3/2}}, & d \le a_o \end{cases}
$$

$$
E^* = \left[\frac{1 - v_{tip}^2}{E_{tip}} + \frac{1 - v_{sample}^2}{E_{sample}} \right]^{-1}
$$

IVERSITY

13

Contact forces: Maugis' Theory

Validity of different models – converting measured adhesion force to work of adhesion

Comments on these theories

- JKR predicts infinite stress at edge of contact circle.
- In the limit of small adhesion JKR -> DMT
- **Most equations of JKR and Hertz and DMT have been** tested experimentally on molecularly smooth surfaces and found to apply extremely well
- Most practical limitation for AFM is that no tip is a perfect smooth sphere, small asperities make a big difference.
- **Hertz, DMT describe conservative interaction forces,** but in JKR, the interaction itself is non-conservative (why?) …for a force to be considered conservative it has to be describable as a gradient of potential energy.

Combining van der Waals force & DMT contact

$$
F_i(z) = \begin{cases} -\frac{AR}{6z^2}, & \text{(for } z > a_0) \\ -\frac{AR}{6a_0^2} + \frac{4}{3}E^* \sqrt{R} (a_0 - z)^{3/2}, & \text{(for } z \le a_0) \end{cases}
$$

