Lecture 11 Three important callibrations

Arvind Raman Mechanical Engineering Birck Nanotechnology Center

1

Three important calibrations

- Ultimately one only applies a Voltage to the Z piezo and measures voltages of cantilever deflection
- Z-piezo calibration: By scanning a sample of known height (calibration grating) in contact mode

Cantilever deflection calibration: δ-Z curve on hard sample

Cantilever stiffness, k, calibration

Z piezo calibration

- **Standard gratings of known dimensions** (with uncertainties traced to wavelength of light) are available commercially
- Scan in contact mode plotting X, Y, Z in volts and set measured dimensions in volts to known dimensions (nm) to calibrate X<Y<Z axis piezos
- **Closed loop piezo stages don't need this but it is still** recommended to do this test often

Cantilever deflection calibration

- Recall photodiode output is in Volts that are proportional to bending angl e which in turn is proportional to tip deflection
- How to convert cantilever deflection in Volts to nm?
- Perform F-Z curve on a hard sample (mica/silicon/sapphire)
- Slope of delfection (V) vs Z (nm) should be 1:1! This provides the calibration (also called sensitivity)

Photodiode output (V)

45º

Piezo displacement Z (nm)

What is k?

- In principle k_c =3EI/L³ but $I=bh^3/12$ and
- 'h' is rarely known accurately

- **Never trust manufacturer supplied value of** k_c , it could be 100% off
- So how to know k_{c} ?
- **Direct measurement requires application of** known force and measurement of cantilever deflection. But how to apply known force?
- Static k_c is different from k_i of each eigenmode i=1,2,3…..

Why do we need to know kc, k1, etc.?

- **If** In contact mode its important to know what force you are applying while imaging
- **For static F-Z curve based force** spectroscopy (local elasticity/adhesion)
- **If** In dynamic mode measurements to know what the imaging force is
- **In tapping mode to convert phase into energy** dissipation
- In essence, without accurate knowledge of k_c quantitative AFM is not possible

Existing methods

Most common methods

Geometric methods (Cleveland and Sader methods)

Thermal methods

(Hutter and Bechhoefer and Butt and Jaschke)

Nice review article - Burnham et al., Nanote nology, 14, 2003. Also the review article of Butt, Cappella, Kappl (Reader)

Cleveland method (add known masses and measure frequency shift) Cleveland et al, Rev. Sci. Inst. **64**, 1993 **Geometric methods**

$$
\omega_1 = \sqrt{\frac{k_1}{m_1}} \quad \omega_1 = \sqrt{\frac{k_1}{m_1 + M}} \quad k_1 = \frac{M}{1 / \omega_1^2 - 1 / \omega_1^2}
$$

Quite accurate but not very convenient, also added mass difficult to know accurately

Sader method (measure Q and ω_f and use hydrodynamic theory to estimate k) **Geometric methods**

FIG. 1. Plot of the real and imaginary components of the hydrodynamic function $\Gamma(\omega)$ as a function of the Reynolds number Re= $\rho_f \omega b^2/(4 \eta)$. The real component Γ , is shown by the solid line; the imaginary component Γ , is shown by the dashed line.

Hydrodynamic force per unit length of cantilever

$$
F_{hydro}(x, \omega) = \frac{\pi}{4} \rho_f \omega^2 b^2 \Gamma(\omega) W(x)
$$

\n
$$
k_1 = m_1 \omega_{vac}^2 \qquad m_1 = 0.2427 \rho_c b h L \qquad (1)
$$

\n
$$
\omega_{vac} = \omega_f \left(1 + \frac{\pi \rho_f b}{4 \rho_c h} \Gamma_r(\omega_f) \right)^{1/2} \qquad (2)
$$

$$
\rho_c h = \frac{\pi \rho_f b}{4} \Big[Q_f \Gamma_i(\omega_f) - \Gamma_r(\omega_f) \Big] \tag{3}
$$

21 $\bigcap \Gamma$ (Do) ω^2 $\pmb{k}_{\text{\tiny{l}}} = 0.1906\rho_{\text{\tiny{f}}} \pmb{b}^2 \pmb{\mathsf{L}} \mathsf{Q}_{\text{\tiny{f}}} \Gamma_{\text{\tiny{j}}}(\mathsf{Re}) \omega_{\text{\tiny{f}}}^2$ Sub (3), (2) in (1) R 2 4 $e = \frac{\rho_f \omega_f b}{l}$ $=\frac{P_f \omega_f}{4\eta}$

Elegant, easy to use

 Needs to be modified for tip mass/higher eigenmodes

9 Sader et al., Rev. Sci. Inst., **70**(10), 1999

Thermal methods

- **Hutter and Bechhoeffer Rev. Sci. Inst. 1993**
	- **Equipartition of energy** $1 \times (x+1)^2$ 1

 Butt and Jaschke (Nanotechnology, 1995) $\frac{1}{2}k_c\left\langle x(t)^2\right\rangle = \frac{1}{2}k_B T$

- Made it mode specific 2 $1 \setminus \mathbf{1}$ $1 \sqrt{(1+2)}$ $\frac{1}{2}k_1\left\langle x_1(t)^2\right\rangle=\frac{1}{2}k_BT$
- Acquire $x(t)$ in thermal bath, perform power spectrum tral density and consider area under the peak

Hutter and Bechhoeffer ignore contributions from multiple eigenmodes **Thermal methods - challenges**

- Power spectrum of $x(t)$ contains many peaks some spurious, which one to choose for Butt and Jaschke's approach?
- What is the standard for calculating area?
- **Requires accurate cantilever deflection** calibration-not easy for higher eigenmodes!
- **Spot location is critical! Spot needs to be** located where the tip is located!

Large spot size causes errors

 Ryan Wagner on experimental uncertainties in extracting elastic moduli and adhesion etc.

