# Experimental uncertainties in extracting material properties from F-Z curves

## 10/6/10 – Lecture 12 Ryan Wagner, Arvind Raman

#### AFM Force Displacement (F-Z) Curve Experiment



#### AFM F-Z Curve Analysis





- Nomenclature:
  - F Tip-sample force
  - Z<sub>nm</sub> Z-piezo Displacement
  - d Tip-sample distance

Parameter of Interest

Elastic modulus (E) is estimated by fitting a model for tip-sample interaction to the F-d Curve

## **F-Z curve calibration**

- 3 calibration parameters needed:
  - nm to V conversion for Z-piezo input signal ( $C_z$ )
  - nm to V conversion for photodiode output signal ( $C_L$ )
  - nm to nN conversion for cantilever deflection ( $\mathbf{k}_{L}$ )



## **Z-Piezo calibration**

 If we assume a linear relationship between voltage input into the Z-Piezo and displacement output

$$Z_{nm} = C_Z Z_V$$

- One method:
  - Scan a sample of "known" height



## **Good Assumption?**



## Photodiode calibration

$$\partial_{nm} = C_L \partial_V = m C_Z \partial_V$$

- One method:
  - Assume that the cantilever and Z-piezo move with a one to one ratio when the sample is "stiff"

![](_page_6_Figure_4.jpeg)

# **Cantilever Stiffness calibration**

![](_page_7_Figure_1.jpeg)

- Large body of literature regarding stiffness calibration (> 100 papers).
- A few common methods include:
  - Sader's method, Thermal Methods, and Cleveland's Method

![](_page_7_Figure_5.jpeg)

## Calibration "Paths"

### • Recap:

- Measure a sample of known height.

 $C_{Z} = f(\partial_{V}, Z_{V})$ 

– Measure a F-Z curve on a stiff sample.

 $C_L = f(\partial_V, Z_V, C_Z)$ 

– Measure the thermal oscillations of the cantilever:

 $k_L \!=\! f(\partial_V,\! C_L,\! T)$ 

• This is not the only method.

## Cantilever tilt correction

![](_page_9_Figure_1.jpeg)

Hutter, Comment on Tilt of Atomic Force Microscope Cantilevers: Effect on Spring Constant and Adhesion Measurements, Langmuir V 21, 2005

## Force-Distance (F-d) Curves

 Need to convert F-Z curve into F-d curve because the tip sample interaction models are given in terms of F versus d

$$d = Z_{nm} - \partial_{nm}$$
$$= C_Z Z_V - C_L \partial_V$$
$$= C_Z (Z_V - m \partial_V)$$

![](_page_10_Figure_3.jpeg)

![](_page_10_Figure_4.jpeg)

## Tip-Sample interaction models

• Many ways to model the interaction of the AFM tip with the sample.

![](_page_11_Figure_2.jpeg)

F = f(d, material properites, surface geometry)

 One example is the Derjaguin Muller Toporov (DMT) model

## DMT contact mechanics

• Modification of Hertz model to include adhesive forces:

$$F = S(d - a_0)^{3/2} - F_0$$

$$f$$
Intermolecular distance

Constant related in tip and sample properties and geometry

• F<sub>0</sub> is related to work of adhesion between tip and sample as:

$$F_0 = 4\pi \frac{W}{\hat{R}}$$

#### Effect of surface geometry on DMT model

![](_page_13_Picture_1.jpeg)

## Effect of surface geometry on DMT model

• For the geometry of a sphere interacting with a cylinder S can be related to E via the equations\*:

$$S = \frac{2\pi (\tilde{E}(k_p))^{1/2}}{3\sqrt{1-k_p^2} (\tilde{K}(k_p))^{3/2} (\hat{R})^{1/2} \hat{E}}$$

$$\begin{split} \widetilde{K}(k_{p}) &\equiv \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{1 - k_{p}^{2} \sin^{2}(\theta)}} \quad \widetilde{E}(k_{p}) &\equiv \int_{0}^{\pi/2} \sqrt{1 - k_{p}^{2} \sin^{2}(\theta)} d\theta \quad \widehat{R} &\equiv \frac{1}{2} \left( \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{1}^{'}} + \frac{1}{R_{2}^{'}} \right) \\ \widehat{E} &= \left( \frac{1 - v^{2}}{E} + \frac{1 - v_{ip}^{2}}{E_{iip}} \right) \end{split}$$

 $k_p$  is found by solving

$$\left(\frac{\frac{1}{R_1} + \frac{1}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2}}\right) = \frac{1/(1 - k_p^2) * \widetilde{E}(k_p) - \widetilde{K}(k_p)}{\widetilde{K}(k_p) - \widetilde{E}(k_p)}$$

• E is directly proportional to S if E >> E<sub>tip</sub>

\*Boresi, A.P. 1978 Advanced Mechanics of Materials 3th Edition. New York: Wiley.

## Effect of surface geometry on DMT model

- Common geometry in AFM
  - Sphere-Sphere:

$$S = \frac{4}{3} \frac{1}{\hat{E}} \left( \frac{1}{R_{tip}} + \frac{1}{R_{surf}} \right)^{-1/2}$$

- Sphere-Plane:

$$S = \frac{4\sqrt{R_{tip}}}{3\hat{E}}$$

## Curve fitting procedure for DMT model

• The DMT model can be linearized by defining a parameter d\* such that:

 $d^* = (d - a_0)^{3/2}$ 

The linearized model is then given as:

$$F = Sd * - F_0$$

• S and  $F_0$  can then be found from the n data pairs ( $F_i$ ,  $d_i^*$ ) as:

$$S = \frac{n \sum_{i=1}^{n} d_{i}^{*} F_{i} - \sum_{i=1}^{n} d_{i}^{*} \sum_{i=1}^{n} F_{i}}{n \sum_{i=1}^{n} (d_{i}^{*})^{2} - \left(\sum_{i=1}^{n} d_{i}^{*}\right)^{2}}$$

$$F_{0} = \frac{\sum_{i=1}^{n} (d_{i}^{*})^{2} \sum_{i=1}^{n} F_{i} - \sum_{i=1}^{n} d_{i}^{*} \sum_{i=1}^{n} d_{i}^{*} F_{i}}{n \sum_{i=1}^{n} (d_{i}^{*})^{2} - \left(\sum_{i=1}^{n} d_{i}^{*}\right)^{2}}$$

$$R_{gof}^{2} = \frac{\sum_{i=1}^{n} (F_{i} - F_{i}^{*})^{2}}{\sum_{i=1}^{n} (F_{i} - F_{i})^{2}}$$

 One additional complications arises as Z<sub>V</sub> is a relative measurement hence the d value resulting from this procedure can be offset by a constant value. This Constant is found by maximizing the R<sup>2</sup><sub>gof</sub> value of the curve fit.

## Summary

 We can consider the above process as inputting 2n+11 or 2n+8 (n is number of data points in F-Z curve) parameters into a "Data Reduction Equation" and outputting elastic modulus or work of adhesion

 $E = f_1(Z_{V_1}^*, ..., Z_{V_n}^*, \delta_{V_1}^*, ..., \delta_{V_n}^*, Z_{V, shift}, \delta_{V, shift}, C_Z, m, k_L, \alpha, R_V, R_{tip}, E_{tip}, \nu_{tip}, \nu)$ 

 $W = f_2(Z_{V_1}^*, ..., Z_{V_n}^*, \delta_{V_1}^*, ..., \delta_{V_n}^*, Z_{V, shift}, \delta_{V, shift}, C_Z, m, k_L, \alpha, R_V, R_{tip})$ 

## Case study: Cellulose Nanocrystals

![](_page_18_Figure_1.jpeg)

#### Uncertainty in measurement

- Lab A and B are given a sample, say X.
  - Lab A  $\rightarrow$  flux capacitance = 7
  - Lab B  $\rightarrow$  flux capacitance = 30
  - Are these measurements in agreement?

![](_page_19_Picture_5.jpeg)

![](_page_19_Figure_6.jpeg)

# **Classifications of uncertainty**

- 3 classification systems
  - Random and systematic
    - Random Varies over the course of the experiment
    - Systematic Does not vary over the course of the experiment
  - Aleatory and Epistemic
    - Aleatory Uncertainty associated with parameters within a model
    - Epistemic Uncertainty associated with the form of the model
  - Type A and type B
    - Type A Evaluated by statistical means
    - Type B Evaluated by other means

#### **Uncertainty Propagation**

Let r be a measured variable then

 $\mathbf{b}_{r}$  – systematic standard uncertainty associated with r  $\mathbf{s}_{r}$  –random standard uncertainty associated with r  $\mathbf{u}_{r}$  – standard combined uncertainty associated with r

 $u_r = (s_r^2 + \sum b_r^2)^{1/2}$ 

 $U_{x,r}$  – expanded uncertainty estimate associated with r:

$$U_{x,r} = k_x u_r$$

 ${\bf U_{x,\,r}}$  corresponds to the range that we are x percent confident that the true value of r falls within  $r_{best}$   $\pm$   $U_{x,\,r}$ 

If we have  $f(r_1, ..., r_n)$  the then uncertainty in f propagates as:

$$u_f = \left(\sum_{i=1}^n \left(\frac{df}{dr_i}u_{r_i}\right)^2\right)^{1/2}$$

**Taylor Series uncertainty propagation formula** 

#### **Uncertainty Propagation**

![](_page_22_Figure_1.jpeg)

## Summary

 Applying the Taylor series uncertainty propagation formula to the data reduction equations results in:

$$\begin{aligned} u_E &= ((\frac{df_1}{dZ_{V_1}}u_{V_1})^2 + \ldots + (\frac{df_1}{dZ_{V_n}}u_{Z_{V_n}})^2 + (\frac{df_1}{d\delta_{V_1}}u_{\delta_{V_1}})^2 + \ldots + (\frac{df_1}{d\delta_{V_n}}u_{\delta_{V_n}})^2 + \\ &\quad (\frac{df_1}{dZ_{V,shift}}u_{Z_{V,shift}})^2 + (\frac{df_1}{d\delta_{V,shift}}u_{\delta_{V,shift}})^2 + (\frac{df_1}{dC_Z}u_{C_Z})^2 + (\frac{df_1}{dm}u_m)^2 + \\ &\quad (\frac{df_1}{dk_L}u_{k_L})^2 + (\frac{df_1}{d\alpha}u_\alpha)^2 + (\frac{df_1}{dR_V}u_{R_V})^2 + (\frac{df_1}{dR_{tip}}u_{R_{tip}})^2 \\ &\quad + (\frac{df_1}{dE_{tip}}u_{E_{tip}})^2 + (\frac{df_1}{d\nu_{tip}}u_{\nu_{tip}})^2 + (\frac{df_1}{d\nu}u_\nu)^2)^{1/2} \end{aligned}$$

(Result for W is similar)

## Case Study Cellulose Nanocrystals

![](_page_24_Figure_1.jpeg)

#### Case Study: Cellulose Nanocrystals<sup>1</sup>

![](_page_25_Figure_1.jpeg)

1. Wagner R., Raman A., Moon. R. "Uncertainty quantification in nanomechanical measurements using the Atomic Force Microscope" In Preparation 2010.

#### Sensitivity Analysis

| Sample Uncertainty Table for Elastic Modulus Analysis |                                          |             |                                              |                                              |                                                                                     |                             |   |
|-------------------------------------------------------|------------------------------------------|-------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------|---|
| Variable<br>(x)                                       | Description                              | Value       | Standard<br>Uncertainty<br>(u <sub>x</sub> ) | Sensitivity<br>(dE/dx)                       | Contribution to Elastic<br>Modulus Variance<br>(dE/dx u <sub>x</sub> ) <sup>2</sup> |                             |   |
| Calibration                                           | n Parameters:                            |             |                                              |                                              |                                                                                     |                             |   |
| Cz                                                    | Z-piezo Sensitivity                      | 14 (nm/V)   | 1 (nm/V)                                     | 0.5 (GPa V/nm)                               | 0.03 (GPa <sup>2</sup> )                                                            |                             |   |
| m                                                     | Nondimentional<br>Photodiode Sensitivity | 6.1 ()      | 0.15 ()                                      | 25 (GPa)                                     |                                                                                     | 14 (GPa²)                   | > |
| α                                                     | Tilt Correction Factor                   | 1.037 ()    | 0.007 ()                                     | 10 (GPa)                                     |                                                                                     | 0.01 (GPa <sup>2</sup> )    |   |
| κ <sub>L</sub>                                        | Cantilever Stiffness                     | 2.5 (nN/nm) | 0.1 <mark>(</mark> nN/nm)                    | 5 (GPa nm/nN)                                | 0.02 (GPa <sup>2</sup> )                                                            |                             |   |
| δ <sub>V, Shift</sub>                                 | Photodiode voltage Shift<br>Factor       | -0.36 (V)   | 0.01 (V)                                     | 0.0002 (GPa/ V)                              |                                                                                     | 4 E -12 (GPa <sup>2</sup> ) |   |
| Model Parameters:                                     |                                          |             |                                              |                                              |                                                                                     |                             |   |
| R <sub>tip</sub>                                      | Radius of AFM tip                        | 10 (nm)     | 1 (nm)                                       | 0.4 (Gpa/nm)                                 | 0.16 (GPa <sup>2</sup> )                                                            |                             |   |
| E <sub>tip</sub>                                      | Elastic Modulus of AFM<br>tip            | 100 ( GPa)  | 3 (GPa)                                      | 0.01 ()                                      | 0.001 (GPa <sup>2</sup> )                                                           |                             |   |
| V <sub>tip</sub>                                      | Poisson's Ratio of AFM<br>tip            | 0.28 ()     | 0.02 ()                                      | 0.6 (GPa)                                    | 0.001 (GPa <sup>2</sup> )                                                           |                             |   |
| R <sub>v</sub>                                        | Radius of Sample<br>measured with AFM    | 0.31 (V)    | .04 (V)                                      | 6 (GPa/V)                                    | 0.05 (GPa <sup>2</sup> )                                                            |                             |   |
| v                                                     | Poisson's Ratio of<br>Sample             | 0.28 ()     | 0.05 ()                                      | 6 (GPa)                                      | 0.01 (GPa <sup>2</sup> )                                                            |                             |   |
| Data pairs sampled during experiment :                |                                          |             | Mean Sensitivity                             | Mean Variance<br>Contribution                | Total Variance<br>Contribution                                                      |                             |   |
| Z <sub>vi</sub>                                       | Z-piezo voltage                          | (V)         | 0.0002 (V)                                   | 30 (GPa/V)                                   | 0.00004 (GPa <sup>2</sup> )                                                         | 0.004 (GPa <sup>2</sup> )   |   |
| δ <sub>Vi</sub>                                       | Photodiode voltage                       | (V)         | 0.0002 (V)                                   | 170 (GPa/V)                                  | 0.001 (GPa <sup>2</sup> )                                                           | 0.2 (GPa <sup>2</sup> )     |   |
| Totai:                                                |                                          |             |                                              | Expanded<br>Uncertainty (k <sub>p</sub> = 2) | Variance                                                                            |                             |   |
| E                                                     | Elastic Modulus                          | 10 .3 (Gpa) | 3.8 (GPa)                                    | 7.6 (GPa)                                    |                                                                                     | 15 (GPa <sup>2</sup> )      | > |