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AFM Force Displacement (F-Z) Curve Experiment

• Nomenclature:
– ZV – Voltage input to the Z-piezo
– δV – Voltage output of the Photodiode 
– Znm – Z-piezo (Sample) Displacement in nm
– δnm – Cantilever deflection in nm
– d – Tip-sample distance 

Fundamental Observables 
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AFM F-Z Curve Analysis

F-Z Curve Force Distance (F-d) Curve
d = Znm - δnm

• Nomenclature:
– F – Tip-sample force
– Znm – Z-piezo Displacement
– d – Tip-sample distance 

Elastic modulus (E) is estimated by fitting a model for tip-sample interaction to the F-d Curve

Parameter of Interest
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F-Z curve calibration
• 3 calibration parameters needed:

– nm to V conversion for Z-piezo input signal (CZ)
– nm to V conversion for photodiode output signal (CL)
– nm to nN conversion for cantilever deflection (kL)
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Z-Piezo calibration
• If we assume a linear relationship between 

voltage input into the Z-Piezo and 
displacement output

• One method:
– Scan a sample of “known” height

VZnm ZCZ =
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Good Assumption?
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Photodiode calibration

• One method:
– Assume that the cantilever and Z-piezo move with 

a one to one ratio when the sample is “stiff”

VZVLnm mCC ∂=∂=∂
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Cantilever Stiffness calibration

• Large body of literature regarding stiffness calibration        
(> 100 papers).  

• A few common methods include:
– Sader’s method, Thermal Methods, and Cleveland's Method

nmLkF ∂=

Thermal Method:
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Calibration “Paths”
• Recap:

– Measure a sample of known height.

– Measure a F-Z curve on a stiff sample.

– Measure the thermal oscillations of the cantilever:

• This is not the only method.

),( VVZ ZfC ∂=

),,( ZVVL CZfC ∂=

),,( TCfk LVL ∂=
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Cantilever tilt correction

Hutter, Comment on Tilt of Atomic Force Microscope Cantilevers: Effect on Spring Constant 
and Adhesion Measurements, Langmuir V 21, 2005
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Force-Distance (F-d) Curves
• Need to convert F-Z curve into F-d 

curve because the tip sample 
interaction models are given in 
terms of F versus d
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Tip-Sample interaction models

• Many ways to model the interaction of the 
AFM tip with the sample.

• One example is the Derjaguin Muller Toporov
(DMT) model

)geometry surface ,properites material ,(dfF =

AFM TIP

Analytic Contact Mechanics Finite Element Modeling Molecular Dynamics Simulations

0
2/3 FSdF +=
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DMT contact mechanics

• Modification of Hertz model to include 
adhesive forces:

• F0 is related to work of adhesion between tip 
and sample as:

0
2/3

0 )( FadSF −−=

Constant related in tip and sample properties and geometry 

Intermolecular distance

R
WF ˆ40 π=
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Effect of surface geometry on DMT model
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Effect of surface geometry on DMT model
• For the geometry of a sphere interacting with a cylinder S  can be related 

to E via the equations*:

where

kp is found by solving

• E is directly proportional to S if E >> Etip

*Boresi, A.P. 1978 Advanced Mechanics of Materials 3th Edition. New York: Wiley.
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Effect of surface geometry on DMT model

• Common geometry in AFM

– Sphere-Sphere:

– Sphere-Plane: 
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Curve fitting procedure for DMT model
• The DMT model can be linearized by defining a parameter d* such that:

The linearized model is then given as:

• S and F0 can then be found from the n data pairs (Fi , d*i) as:

• One additional complications arises as ZV is a relative measurement hence the 
d value resulting from this procedure can be offset by a constant value.  This 
Constant is found by maximizing the R2

gof value of the curve fit.
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Summary

• We can consider the above process as 
inputting 2n+11 or 2n+8 (n is number of data 
points in F-Z curve) parameters into a “Data 
Reduction Equation” and outputting elastic 
modulus or work of adhesion 
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Case study: Cellulose Nanocrystals 

E =  10.3 GPa
W =  120 mJ/m2
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Uncertainty in measurement

Flux Capacitance (F/(m2s))
7 30
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Disagreement Agreement? 

• Lab A and B are given a 
sample, say X.

• Lab A → flux capacitance = 7
• Lab B → flux capacitance = 30
• Are these measurements in 

agreement?
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Classifications of uncertainty
• 3 classification systems

– Random and systematic 
• Random – Varies over the course of the experiment
• Systematic – Does not vary over the course of the 

experiment
– Aleatory and Epistemic

• Aleatory – Uncertainty associated with parameters within a 
model

• Epistemic – Uncertainty associated with the form of the 
model

– Type A and type B
• Type A – Evaluated by statistical means
• Type B – Evaluated by other means 
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Uncertainty Propagation 

Let r be a measured variable then

br – systematic standard uncertainty associated with r
sr –random standard uncertainty associated with r 
ur – standard combined uncertainty associated with r

Ux, r – expanded uncertainty estimate associated with r: 

Ux, r corresponds to the range that we are x percent confident that the true value of r falls 
within rbest ± Ux, r

If we have f(r1 , …. , rn) the then uncertainty in f propagates as:
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Uncertainty Propagation

1. Identify Input 
Parameters and 
uncertainties 

2. Propagate input 
uncertainties to 
output uncertainty 

3. Identify Dominate 
Contribution to 
Output Uncertainty 

4. Try to improve 
experiment based 
on uncertainty 
analysis



Summary
• Applying the Taylor series uncertainty 

propagation formula to the data reduction 
equations results in: 

(Result for W is similar) 24



Case Study Cellulose Nanocrystals
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Case Study: Cellulose Nanocrystals1
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Value Mean 95 % CI Units
Et 7.9         [2.9, 22.0]         GPa
W            116         [77,  180]        mJ/m2

1. Wagner R.,  Raman A., Moon. R. “Uncertainty quantification in nanomechanical measurements using the Atomic Force Microscope” In Preparation 2010.
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Sensitivity Analysis
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