Tags: atomistic modeling and simulation

Resources (1-20 of 34)

  1. A Condensed Matter Physics class and a Course-Based Undergraduate Research Experience (CURE) with the MIT Atomic-Scale Modeling Toolkit

    07 Nov 2022 | | Contributor(s):: David Strubbe

    In this presentation, Dr. Strubbe will discuss how he has been using the MIT Atomic-Scale Modeling Toolkit as a part of his undergraduate and graduate class on condensed matter physics. In discussion sections, simulations are performed to illustrate concepts like covalent bonding,...

  2. Addressing Molecular Dynamics Time-scale Issues to Study Atomic-scale Friction

    12 Oct 2010 | | Contributor(s):: Ashlie Martini

    This presentation will include an introduction to several accelerated molecular dynamics methods. However, particular focus will be given to parallel replica (ParRep) dynamics in which atomistic simulations are run parallel in time to extend their total duration. The ParRep method is based on the...

  3. Atomistic Modeling of Nano Devices: From Qubits to Transistors

    13 Apr 2016 | | Contributor(s):: Rajib Rahman

    In this talk, I will describe such a framework that can capture complex interactions ranging from exchange and spin-orbit-valley coupling in spin qubits to non-equilibrium charge transport in tunneling transistors. I will show how atomistic full configuration interaction calculations of exchange...

  4. Atomistic Modeling: Past, Present, and Future, MGI, ICME, etc.

    03 Nov 2015 | | Contributor(s):: Paul Saxe

    I will present a perspective on atomistic modeling — tools using quantum methods such as DFT, as well as molecular dynamics and Monte Carlo methods based on forcefields — over the past 30 years or so. While we are all caught up in the present, it is important to remember and realize...

  5. Atomistic Simulations of Materials Chemistry: From Nanoelectronics to Energetics

    07 Apr 2015 | | Contributor(s):: Alejandro Strachan

    Presentation slides with embedded videos are available for download. Please see the Support Docs tab.

  6. Atomistic Simulations of Reliability

    06 Jul 2010 | | Contributor(s):: Dragica Vasileska

    Discrete impurity effects in terms of their statistical variations in number and position in the inversion and depletion region of a MOSFET, as the gate length is aggressively scaled, have recently been researched as a major cause of reliability degradation observed in intra-die and die-to-die...

  7. Bandstructure Effects in Nano Devices With NEMO: from Basic Physics to Real Devices and to Global Impact on nanoHUB.org

    08 Mar 2019 | | Contributor(s):: Gerhard Klimeck

    This presentation will intuitively describe how bandstructure is modified at the nanometer scale and what some of the consequences are on the device performance.

  8. Bridging Mechanics and Electrochemistry: Experiments and Modeling on Battery Materials

    03 Oct 2018 | | Contributor(s):: Kejie Zhao

    This talk focuses on the interplay of mechanics, such as large deformation, plasticity, and fracture, with chemical reactions in Li-ion batteries. I will discuss the theories of coupled diffusion and stress, stress regulated interfacial reactions, reactive flow, and corrosive fracture in...

  9. Computer Modeling Module: Chemical Reaction Simulation using SIESTA

    23 Aug 2017 | | Contributor(s):: Lan Li

    This activity guides students through a module using the SIESTA DFT tool that is housed within the MIT Atomic Scale Modeling Toolkit on nanoHUB. Instructional videos, background reading, reminders and the assignment are included. Learning outcomes: Get familiar with SIESTA tool and activation...

  10. Dislocation Structure and Propagation with Molecular Dynamics

    20 Feb 2019 | | Contributor(s):: Sam Reeve, Alejandro Strachan

    In this computational lab you will learn about dislocations via online molecular dynamics (MD) simulations using nanoHUB. The simulations involve various types of dislocations in FCC and BCC crystals.

  11. Ductile and Brittle Failure in Metals with Molecular Dynamics

    20 Feb 2019 | | Contributor(s):: Sam Reeve, Alejandro Strachan

    In this computational lab you will perform online molecular dynamics (MD) simulations of nanoscale cracks under uniaxial tension through nanoHUB. Simulations with varying temperature and crystal structure will provide information to: Distinguish the atomistic mechanisms of ductile and...

  12. Electrochemical Simulation

    20 Jul 2017 | | Contributor(s):: Joseph Anderson

    Simulate molecular dynamics using LAMMPS as well as an addition electrochemical force field (EChemDID)

  13. Illinois MatSE485/Phys466/CSE485 - Atomic-Scale Simulation

    27 Jan 2009 | | Contributor(s):: David M. Ceperley

    THE OBJECTIVE is to learn and apply fundamental techniques used in (primarily classical) simulations in order to help understand and predict properties of microscopic systems in materials science, physics, chemistry, and biology. THE EMPHASIS will be on connections between the simulation...

  14. Illinois PHYS 466, Lecture 1: Introduction

    28 Jan 2009 | | Contributor(s):: David M. Ceperley

    Introduction to Simulation Content: Why do simulations? Moore's law Two Simulation Modes Dirac, 1929 Challenges of Simulation: Physical and mathematical underpinnings Complexity Estimation of Computer Time and Size Challenges of Simulation: Multi-scale computational materials research Short...

  15. Illinois PHYS 466, Lecture 6: Scalar Properties and Static Correlations

    27 Feb 2009 | | Contributor(s):: David M. Ceperley

    Scalar Properties, Static Correlations and Order ParametersWhat do we get out of a simulation? Static properties: pressure, specific heat, etc. Density Pair correlations in real space and Fourier space Order parameters and broken symmetry: How to tell a liquid from a solid Dynamical properties...

  16. Illinois PHYS 466, Lecture 7: Dynamical Correlations & Transport Coefficients

    27 Feb 2009 | | Contributor(s):: David M. Ceperley

    Dynamical correlations and transport coefficientsDynamics is why we do molecular dynamics! Perturbation theory Linear-response theory Diffusion constants, velocity-velocity auto correlation fct. Transport coefficients Diffusion: Particle flux Viscosity: Stress tensor Heat transport: energy...

  17. Introduction to Computational Modeling - Input Parameters for SIESTA Simulation

    16 Jun 2016 | | Contributor(s):: Lan Li

    This instructional video is part 2 in a two part series.  It  explains how to set up input parameters for the SIESTA simulation tool.

  18. Introduction to Computational Modeling - Schrödinger Equation, Density Functional Theory (DFT), Kohn-Sham Method, DFT Code SIESTA

    16 Jun 2016 | | Contributor(s):: Lan Li

    This instructional video is part 1 in a two part series.  It provides an introduction to computational modeling, including motivation for studying this topic.  The Schrödinger Equation is reviewed and its relationship to Density Functional Theory (DFT) is explained.  The...

  19. IWCN 2021: Multiscale Modeling and Simulation of Advanced Photovoltaic Devices

    13 Jul 2021 | | Contributor(s):: Yongjie Zou, Reza Vatan Meidanshahi, Raghuraj Hathwar, Stephen M. Goodnick

    The introduction of new materials, device concepts and nanotechnology-based solutions to achieve high efficiency and low cost in photovoltaic (PV) devices requires modeling and simulation well beyond the current state of the art. New materials and heterojunction interfaces require atomistic...

  20. Martensitic Transformations with Molecular Dynamics

    21 Feb 2019 | | Contributor(s):: Sam Reeve, Alejandro Strachan

    In this computational lab you will perform online molecular dynamics (MD) simulations through nanoHUB of martensitic transformations and analyze the results in order to: Describe the atomistic process of martensitic, solid-solid phase transitions Compare different martensitic alloys,...