Support Options

Submit a Support Ticket

Home Tags ballistic MOSFET Resources

Tags: ballistic MOSFET

Resources (21-33 of 33)

  1. ECE 612 Lecture 11: The Quasi-ballistic MOSFET

    18 Sep 2006 | Online Presentations | Contributor(s): Mark Lundstrom

  2. Towards Multi-Scale Modeling of Carbon Nanotube Transistors

    20 Sep 2006 | Papers | Contributor(s): Jing Guo, Supriyo Datta, Mark Lundstrom, M. P. Anantram

    Multiscale simulation approaches are needed in order to address scientific and technological questions in the rapidly developing field of carbon nanotube electronics. In this paper, we...

  3. Logic Devices and Circuits on Carbon Nanotubes

    05 Apr 2006 | Online Presentations | Contributor(s): Joerg Appenzeller

    Over the last years carbon nanotubes (CNs) have attracted an increasing interest as building blocks for nano-electronics applications. Due to their unique properties enabling e.g. ballistic...

  4. Exploring New Channel Materials for Nanoscale CMOS

    21 May 2006 | Papers | Contributor(s): Anisur Rahman

    The improved transport properties of new channel materials, such as Ge and III-V semiconductors, along with new device designs, such as dual gate, tri gate or FinFETs, are expected to enhance the...

  5. Device Physics and Simulation of Silicon Nanowire Transistors

    20 May 2006 | Papers | Contributor(s): Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the...

  6. Optimization of Transistor Design for Carbon Nanotubes

    20 Jan 2006 | Online Presentations | Contributor(s): Jing Guo

    We have developed a self-consistent atomistic simulator for CNTFETs. Using the simulator, we show that a recently reported high-performance CNTFET delivers a near ballistic on-current. The...

  7. A 3D Quantum Simulation of Silicon Nanowire Field-Effect Transistors

    17 Jan 2006 | Online Presentations | Contributor(s): Mincheol Shin

    As the device size of the conventional planar metal oxide semiconductor field effect transistor (MOSFET) shrinks into the deep sub micron regime, the device performance significantly...

  8. Ballistic Nanotransistors - Learning Module

    07 Dec 2005 | Learning Modules | Contributor(s): Mark Lundstrom

    This resource is an introduction to the theory ballistic nanotransistors. No transistor is fully ballistic, but analyzing nanotransistors by neglecting scattering processes provides new insights...

  9. Notes on the Ballistic MOSFET

    08 Oct 2005 | Papers | Contributor(s): Mark Lundstrom

    When analyzing semiconductor devices, the traditional approach is to assume that carriers scatter frequently from ionized impurities, phonons, surface roughness, etc. so that the average...

  10. Simple Theory of the Ballistic MOSFET

    11 Oct 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    Silicon nanoelectronics has become silicon nanoelectronics, but we still analyze, design, and think about MOSFETs in more or less in the same way that we did 30 years ago. In this talk, I...

  11. On the Reliability of Micro-Electronic Devices: An Introductory Lecture on Negative Bias Temperature Instability

    28 Sep 2005 | Online Presentations | Contributor(s): Muhammad A. Alam

    In 1930s Bell Labs scientists chose to focus on Siand Ge, rather than better known semiconductors like Ag2S and Cu2S, mostly because of their reliable performance. Their choice was rewarded with...

  12. Self-Heating and Scaling of Silicon Nano-Transistors

    05 Aug 2004 | Online Presentations | Contributor(s): Eric Pop

    The most often cited technological roadblock of nanoscale electronics is the "power problem," i.e. power densities and device temperatures reaching levels that will prevent their reliable...

  13. Theory of Ballistic Nanotransistors

    27 Nov 2002 | Papers | Contributor(s): Anisur Rahman, Jing Guo, Supriyo Datta, Mark Lundstrom

    Numerical simulations are used to guide the development of a simple analytical theory for ballistic field-effect transistors. When two-dimensional electrostatic effects are small, (and when the..., a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.