Tags: ballistic transport

Papers (1-8 of 8)

  1. Electron Transport in Schottky Barrier CNTFETs

    24 Oct 2017 | | Contributor(s):: Igor Bejenari

    A given review describes models based on Wentzel-Kramers-Brillouin approximation, which are used to obtain I-V characteristics for ballistic CNTFETs with Schottky-Barrier (SB) contacts. The SB is supposed to be an exponentially or linearly decaying function along the channel. The ...

  2. Exploring New Channel Materials for Nanoscale CMOS

    28 Jun 2013 | | Contributor(s):: Anisur Rahman

    The improved transport properties of new channel materials, such as Ge and III-V semiconductors, along with new device designs, such as dual gate, tri gate or FinFETs, are expected to enhance the performance of nanoscale CMOS devices. Novel process techniques, such as ALD, high-# dielectrics,...

  3. Device Physics and Simulation of Silicon Nanowire Transistors

    28 Jun 2013 | | Contributor(s):: Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

  4. Carbon Nanotube Electronics: Modeling, Physics, and Applications

    28 Jun 2013 | | Contributor(s):: Jing Guo

    In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias transport can be nearly ballistic across distances of several hundred nanometers. Deposition of high-k gate...

  5. Physics and Simulation of Quasi-Ballistic Transport in Nanoscale Transistors

    28 Jun 2013 | | Contributor(s):: Jung-Hoon Rhew

    The formidable progress in microelectronics in the last decade has pushed thechannel length of MOSFETs into decanano scale and the speed of BJTs into hundreds of gigahertz. This progress imposes new challenges on device simulation as the essential physics of carrier transport departs that of...

  6. Landauer Approach to Thermoelectrics

    23 Jun 2013 | | Contributor(s):: Changwook Jeong

    Many efforts have been made to search for materials that maximize the thermoelectric (TE) figure of merit, ZT, but for decades, the improvement has been limited because of the interdependent material parameters that determine ZT. Recently, several breakthroughs have been reported by applying...

  7. Dissipative Quantum Transport in Semiconductor Nanostructures

    28 Dec 2011 | | Contributor(s):: Peter Greck

    In this work, we investigate dissipative quantum transport properties of an open system. After presenting the background of ballistic quantum transport calculations, a simple scattering mechanism, called Büttiker Probes, is introduced. Then, we assess the properties of the Büttiker Probe model...

  8. Quantum Ballistic Transport in Semiconductor Heterostructures

    27 Aug 2007 | | Contributor(s):: Michael McLennan

    The development of epitaxial growth techniques has sparked a growing interest in an entirely quantum mechanical description of carrier transport. Fabrication methods, such as molecular beam epitaxy (MBE), allow for growth of ultra-thin layers of differing material compositions. Structures can be...