Tags: ballistic transport

All Categories (21-40 of 57)

  1. ECE 656 Lecture 5: Modes and Transmission

    16 Sep 2011 | | Contributor(s):: Mark Lundstrom

    Outline:ModesTransmissionDiscussionSummary

  2. ECE 656 Lecture 7: Resistance - Ballistic to Diffusive

    16 Sep 2011 | | Contributor(s):: Mark Lundstrom

    Outline:Review2D ballistic resistors2D diffusive resistorsDiscussionSummary

  3. Lecture 3: Resistance-Ballistic to Diffusive

    28 Jul 2011 | | Contributor(s):: Mark Lundstrom

    The resistance of a ballistic conductor and concepts, such as the quantumcontact resistance, are introduced and discussed. The results are then generalized to treat transport all the way from the ballistic to diffusive regimes.

  4. OMEN Nanowire Homework Problems

    24 Jan 2011 | | Contributor(s):: SungGeun Kim

    OMEN Nanowire homework problems: anyone who has gone through the first-time user guide of OMEN Nanowire and done the examples in the guide should be able to run simulations in these homework problems and find the answers to them.

  5. difference between ballistic transport and quasic -ballistc transport

    Q&A|Closed | Responses: 0

    difference between ballistic transport and quasic -ballistc transport ,,, what is subband structure ? how wiil it look like. for gate all around (GAA)?

    https://nanohub.org/answers/question/651

  6. For a length within the ballistic regime, why the current value changing with the length ?

    Q&A|Open | Responses: 1

    Hi !

    Ok, I considered the relaxation time to find the relaxation length ( L = tau * Vf = 36.8 um  ; taking Vf = 8.10^5m/s )

    And so I chose 2 values for the length...

    https://nanohub.org/answers/question/492

  7. ECE 656 Lecture 35: Ballistic Transport

    09 Dec 2009 | | Contributor(s):: Mark Lundstrom

    Outline:Schottky barriersTransport across a thin baseHigh-field collectors

  8. ECE 656 Lecture 7: 2 and 3D Resistors

    27 Sep 2009 | | Contributor(s):: Mark Lundstrom

    Outline:Another view of the same problem2D resistorsDiscussion3D resistorsSummary

  9. ECE 656 Lecture 13: Solving the BTE: equilibrium and ballistic

    22 Sep 2009 | | Contributor(s):: Mark Lundstrom

    Outline:Quick reviewEquilibrium BTEBallistic BTEDiscussionSummary

  10. ECE 656 Lecture 6: Discussion

    18 Sep 2009 | | Contributor(s):: Mark Lundstrom

    OutlineQuantum confinement and effective massBulk 1D transport and mfpPeriodic vs. Box boundary conditionsThermal velocities"Ballistic mobility"

  11. ECE 656 Lecture 5: 1D Resistors

    14 Sep 2009 | | Contributor(s):: Mark Lundstrom

    Outline:Review1D ballistic resistors1D diffusive resistorsDiscussionSummary

  12. Band Structure Lab Demonstration: Bulk Strain

    12 Jun 2009 | | Contributor(s):: Gerhard Klimeck

    This video shows an electronic structure calculation of bulk Si using Band Structure Lab. Several powerful features of this tool are demonstrated.

  13. ECE 659 Lecture 2: Molecular, Ballistic and Diffusive Transport

    21 Jan 2009 | | Contributor(s):: Supriyo Datta

  14. Thermoelectric Power Factor Calculator for Superlattices

    18 Oct 2008 | | Contributor(s):: Terence Musho, Greg Walker

    Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in 1D Superlattice Structures using Non-Equilibrium Green's Functions

  15. ECE 612 Lecture 26: Heterostructure FETs

    10 Dec 2008 | | Contributor(s):: Mark Lundstrom

    Outline:1) Introduction,2) Heterojunction review,3) Modulation doping,4) I-V characteristics,5) Device Structure / Materials,6) Summary.

  16. ECE 495N Lecture 26: Ballistic Conductance

    01 Dec 2008 | | Contributor(s):: Supriyo Datta

  17. Thermoelectric Power Factor Calculator for Nanocrystalline Composites

    18 Oct 2008 | | Contributor(s):: Terence Musho, Greg Walker

    Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in a 2D Nanocrystalline Composite Structure using Non-Equilibrium Green's Functions

  18. ECE 612 Lecture 8: Scattering Theory of the MOSFET II

    08 Oct 2008 | | Contributor(s):: Mark Lundstrom

    Outline: 1) Review and introduction,2) Scattering theory of the MOSFET,3) Transmission under low VDS,4) Transmission under high VDS,5) Discussion,6) Summary.

  19. ECE 612 Lecture 7: Scattering Theory of the MOSFET I

    08 Oct 2008 | | Contributor(s):: Mark Lundstrom

    Outline: 1) Review and introduction,2) Scattering theory of the MOSFET,3) Transmission under low VDS,4) Transmission under high VDS,5) Discussion,6) Summary.

  20. Lecture 3A: The Ballistic MOSFET

    10 Sep 2008 | | Contributor(s):: Mark Lundstrom

    The IV characteristic of the ballistic MOSFET is formally derived. When Boltzmann statistics are assumed, the model developed here reduces to the one presented in Lecture 2. There is no new physics in this lecture - just a proper mathematical derivation of the approach that was developed...