Tags: band structure

Description

In solid-state physics, the electronic band structure of a solid describes ranges of energy that an electron is "forbidden" or "allowed" to have. It is a function of the diffraction of the quantum mechanical electron waves in the periodic crystal lattice with a specific crystal system and Bravais lattice. The band structure of a material determines several characteristics, in particular its electronic and optical properties. More information on Band structure can be found here.

All Categories (1-20 of 148)

  1. Dec 01 2021

    nanoHUB Online Recitation Series for Semiconductor Education: ABACUS Overview and Crystal Structures

    Series Information: Recent economic needs have re-kindled national and global interest in semiconductor devices and created an urgent need for  more semiconductor device engineers and...

    https://nanohub.org/events/details/2112

  2. Jerome Rodriquez Halsell

    https://nanohub.org/members/339240

  3. OctopusPY: Tool for Calculating Effective Mass from Octopus DFT Bandstructures

    16 Aug 2021 | | Contributor(s):: Olivia M. Pavlic, Austin D. Fatt, Gregory T. Forcherio, Timothy A. Morgan, Jonathan Schuster

    OctopusPY is a Python package supporting manipulation and analytic processing of electronic band structure data generated by the density functional theory (DFT) software Octopus. In particular, this package imports Octopus-calculated band structure for a given material and...

  4. MIT Atomic-Scale Modeling Toolkit

    15 Jan 2008 | | Contributor(s):: daniel richards, Elif Ertekin, Jeffrey C Grossman, David Strubbe, Justin Riley, Enrique Guerrero

    Tools for Atomic-Scale Modeling

  5. ME 697R Lecture 5.2: First Principles Method - Electronic Structure of Solids

    10 Sep 2019 | | Contributor(s):: Xiulin Ruan

  6. AQME Advancing Quantum Mechanics for Engineers

    Introduction to Advancing Quantum Mechanics for Engineers and Physicists “Advancing Quantum Mechanics for Engineers” (AQME) toolbox is an assemblage of individually authored tools...

    https://nanohub.org/wiki/aqme2

  7. Why the dielectric band dominates at low frequencies unlike the air band dominates at high frequencies in photonic crystal fiber band diagram??

    Closed | Responses: 0

    https://nanohub.org/answers/question/2172

  8. Bandstructure Effects in Nano Devices With NEMO: from Basic Physics to Real Devices and to Global Impact on nanoHUB.org

    08 Mar 2019 | | Contributor(s):: Gerhard Klimeck

    This presentation will intuitively describe how bandstructure is modified at the nanometer scale and what some of the consequences are on the device performance.

  9. MSEN 201 Lecture 16.3: Electrical Properties - Electronic Bands in Metals, Semiconductors, Insulators

    13 Feb 2019 | | Contributor(s):: Patrick J Shamberger

  10. MSEN 201 Lecture 16.4: Electrical Properties - Electronic Band Structure

    13 Feb 2019 | | Contributor(s):: Patrick J Shamberger

  11. Learning Module: Band Structure for Pure and Doped Silicon

    10 Dec 2018 | | Contributor(s):: Peilin Liao

    In this lab, students will learn to perform online density functional theory (DFT) simulations to compute band structures and density of states (DOS) for pure and doped Si using the DFT Material Properties Simulator available on nanoHUB. The students will work with crystalline pure and doped...

  12. Electronic Structure and Transport Properties of Graphene on Hexagonal Boron Nitride

    06 Dec 2018 | | Contributor(s):: Shukai Yao, Luis Regalado Bermejo, Alejandro Strachan

      Graphene is a zero-bandgap conductor with high carrier mobility. It is desired to search for an opening of band structure of graphene such that this kind of material can be applied in electronic devices. Depositing hexagonal Boron Nitride (h-BN) opens a bandgap in the band structure of...

  13. Using DFT to Simulate the Band Structure and Density of States of Crystalline Materials

    23 Aug 2017 | | Contributor(s):: André Schleife, Materials Science and Engineering at Illinois

    In this activity, DFT is used to simulate the band structure and density of states of several crystalline semiconductors.  Users are instructed in how to use the Bilbao Crystallographic Server to select a path through the Brillouin zone for each structure. This activity is adapted from an...

  14. Quantum Coherent Transport in Atoms & Electrons

    21 Jun 2017 | | Contributor(s):: Yong P. Chen

    I will discuss some recent experimental examples from my lab studying quantum coherent transport and interferometry in electrons as well as cold atoms.   For example, phase coherent electron transport and interference around a cylinder realized in a nanowire of topological insulator...

  15. ECE 695NS Lecture 5: Bandstructures for Electro-optic Systems

    27 Jan 2017 | | Contributor(s):: Peter Bermel

    Outline:Bandstructure problemBloch's theoremPhotonic bandstructures1D2D

  16. ECE 695NS Lecture 6: Photonic Bandstructures

    27 Jan 2017 | | Contributor(s):: Peter Bermel

    Outline:Bandstructure symmetries2D Photonic bandstructuresPhotonic waveguide bandstructuresPhotonic slab bandstructures3D Photonic lattice types + bandstructures

  17. ECE 695NS Lecture 7: Photonic Bandstructure Calculations

    27 Jan 2017 | | Contributor(s):: Peter Bermel

    Outline:Maxwell eigenproblemMatrix decompositionsReformulating the eigenproblemsIterative eigensolversConjugate gradient solversPreconditionersDavidson solversTargeted solvers

  18. NEMO5, a Parallel, Multiscale, Multiphysics Nanoelectronics Modeling Tool: From Basic Physics to Real Devices and to Global Impact on nanoHUB.org

    10 Nov 2016 | | Contributor(s):: Gerhard Klimeck

    The Nanoelectronic Modeling tool suite NEMO5 is aimed to comprehend the critical multi-scale, multi-physics phenomena and deliver results to engineers, scientists, and students through efficient computational approaches. NEMO5’s general software framework easily includes any kind of...

  19. Electronic Structure of Monolayer MoS2

    Collections | 31 Oct 2016 | Posted by David M Guzman

    https://nanohub.org/groups/materials/collections/saved-materials-science-runs

  20. Electronic Structure of Bulk MoS2

    Collections | 31 Oct 2016 | Posted by David M Guzman

    https://nanohub.org/groups/materials/collections/saved-materials-science-runs