Tags: band structure

Description

In solid-state physics, the electronic band structure of a solid describes ranges of energy that an electron is "forbidden" or "allowed" to have. It is a function of the diffraction of the quantum mechanical electron waves in the periodic crystal lattice with a specific crystal system and Bravais lattice. The band structure of a material determines several characteristics, in particular its electronic and optical properties. More information on Band structure can be found here.

Animations (1-4 of 4)

  1. InAs: Evolution of iso-energy surfaces for heavy, light, and split-off holes due to uniaxial strain.

    25 May 2010 | Animations | Contributor(s): Abhijeet Paul, Denis Areshkin, Gerhard Klimeck

    Movie was generated using Band Structure Lab tool at nanoHUB and allows to scan over four parameters: Hole energy measured from the top of the corresponding band (i.e. the origin of energy...

    https://nanohub.org/resources/9016

  2. Electronic band structure

    12 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    In solid-state physics, the electronic band structure (or simply band structure) of a solid describes ranges of energy in which an electron is "forbidden" or "allowed". The band structure is...

    https://nanohub.org/resources/8814

  3. Band Structure Lab Demonstration: Bulk Strain

    12 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck

    This video shows an electronic structure calculation of bulk Si using Band Structure Lab. Several powerful features of this tool are demonstrated.

    https://nanohub.org/resources/6815

  4. Piece-Wise Constant Potential Barriers Tool Demonstration: Bandstructure Formation with Finite Superlattices

    11 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation and analysis of a systems with a series of potential barriers. Several powerful analytic features of Piece-wise Constant Potential Barrier Tool (PCPBT) are...

    https://nanohub.org/resources/6836