Tags: band structure


In solid-state physics, the electronic band structure of a solid describes ranges of energy that an electron is "forbidden" or "allowed" to have. It is a function of the diffraction of the quantum mechanical electron waves in the periodic crystal lattice with a specific crystal system and Bravais lattice. The band structure of a material determines several characteristics, in particular its electronic and optical properties. More information on Band structure can be found here.

Papers (1-2 of 2)

  1. Coupled Effect of Strain and Magnetic Field on Electronic Bandstructure of Graphene

    07 Dec 2010 | | Contributor(s):: yashudeep singh

    We explore the possibility of coupling between planar strain and perpendicular magnetic field on electronic bandstructure of graphene. We study uni-axially, bi-axially and shear strained graphene under magnetic field. In line with Rammal’s formalism using nearest neighbor tight binding scheme we...

  2. Device Physics and Simulation of Silicon Nanowire Transistors

    28 Sep 2006 | | Contributor(s)::

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...