Tags: bottom up approach

Online Presentations (41-46 of 46)

  1. Lecture 2: Thresholds, Islands, and Fractals

    04 Nov 2008 | | Contributor(s):: Muhammad A. Alam

    Three basic concepts of the percolation theory – namely, percolation threshold, cluster size distribution, and fractal dimension – are defined and methods to calculate them are illustrated via elementary examples. These three concepts will form the theoretical foundation for discussion in...

  2. Lecture 1: Percolation in Electronic Devices

    04 Nov 2008 | | Contributor(s):: Muhammad A. Alam

    Even a casual review of modern electronics quickly convinces everyone that randomness of geometrical parameters must play a key role in understanding the transport properties. Despite the diversity of these phenomena however, the concepts percolation theory provides a broad theoretical framework...

  3. Introductory Comments

    29 Sep 2008 | | Contributor(s):: Muhammad A. Alam

  4. Lecture 7: Connection to the Bottom Up Approach

    23 Sep 2008 | | Contributor(s):: Mark Lundstrom

    While the previous lectures have been in the spirit of the bottom up approach, they did not follow the generic device model of Datta. In this lecture, the ballistic MOSFET theory will be formally derived from the generic model for a nano-device to show the connection explicitly.

  5. Introduction: Nanoelectronics and the meaning of resistance

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    This lecture provides a brief overview of the five-day short course whose purpose is to introduce a unified viewpoint for a wide variety of nanoscale electronic devices of great interest for all kinds of applications including switching, energy conversion and sensing. Our objective, however, is...

  6. Electronics From the Bottom Up: a view of conductance

    17 Aug 2007 | | Contributor(s):: Supriyo Datta

    Resistance is one of the first concepts an electrical engineer learns, but things get interesting at the nanoscale. Experimentalists have found that no matter how short the resistor is, its resistance cannot drop below a fundamental lower limit. They also found that resistance increases in...