Tags: bottom up approach

Resources (1-20 of 59)

  1. 2009 NCN@Purdue Summer School: Electronics from the Bottom Up

    22 Sep 2009 | | Contributor(s):: Supriyo Datta, Mark Lundstrom, Muhammad A. Alam, Joerg Appenzeller

    The school will consist of two lectures in the morning on the Nanostructured Electronic Devices: Percolation and Reliability and an afternoon lecture on Graphene Physics and Devices. A hands on laboratory session will be available in the afternoons.

  2. 2010 NCN@Purdue Summer School: Electronics from the Bottom Up

    18 Jan 2011 |

    Electronics from the Bottom Up seeks to bring a new perspective to electronic devices – one that is designed to help realize the opportunities that nanotechnology presents.

  3. 2011 NCN Summer School: Welcome and Introduction

    20 Jul 2011 | | Contributor(s):: Mark Lundstrom

  4. 2011 NCN@Purdue Summer School: Electronics from the Bottom Up

    20 Jul 2011 |

    click on image for larger versionAlumni Discussion Group: LinkedIn

  5. Additional Tutorials on Selected Topics in Nanotechnology

    29 Mar 2011 | | Contributor(s):: Gerhard Klimeck, Umesh V. Waghmare, Timothy S Fisher, N. S. Vidhyadhiraja

    Select tutorials in nanotechnology, a part of the 2010 NCN@Purdue Summer School: Electronics from the Bottom Up.

  6. Colloquium on Graphene Physics and Devices

    22 Sep 2009 | | Contributor(s):: Joerg Appenzeller, Supriyo Datta, Mark Lundstrom

    This short course introduces students to graphene as a fascinating research topic as well as to develop their skill in problem solving using the tools and techniques of electronics from the bottom up.

  7. ECE 656 Lecture 41: Transport in a Nutshell

    21 Feb 2012 | | Contributor(s):: Mark Lundstrom

  8. Electronics From the Bottom Up: a view of conductance

    17 Aug 2007 | | Contributor(s):: Supriyo Datta

    Resistance is one of the first concepts an electrical engineer learns, but things get interesting at the nanoscale. Experimentalists have found that no matter how short the resistor is, its resistance cannot drop below a fundamental lower limit. They also found that resistance increases in...

  9. Introduction: Nanoelectronics and the meaning of resistance

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    This lecture provides a brief overview of the five-day short course whose purpose is to introduce a unified viewpoint for a wide variety of nanoscale electronic devices of great interest for all kinds of applications including switching, energy conversion and sensing. Our objective, however, is...

  10. Introductory Comments

    22 Sep 2009 | | Contributor(s):: Mark Lundstrom

  11. Introductory Comments

    29 Sep 2008 | | Contributor(s):: Muhammad A. Alam

  12. Lecture 10: Case study-Near-equilibrium Transport in Graphene

    19 Aug 2011 | | Contributor(s):: Mark Lundstrom

    Near-equilibrium transport in graphene as an example of how to apply the concepts in lectures 1-8.

  13. Lecture 10: Interface Damage & Negative Bias Temperature Instability

    02 Feb 2010 | | Contributor(s):: Muhammad A. Alam

    Outline:Background informationNBTI interpreted by R-D modelThe act of measurement and observed quantityNBTI vs. Light-induced DegradationPossibility of Degradation-free TransistorsConclusions

  14. Lecture 1: Electronics from the Bottom Up

    22 Sep 2009 | | Contributor(s):: Supriyo Datta

  15. Lecture 1: Introduction to Near-equilibrium Transport

    20 Jul 2011 | | Contributor(s):: Mark Lundstrom

    A short overview of the topics to be discussed in the following nine lectures in this short course on near-equilibrium transport.

  16. Lecture 1: Percolation and Reliability of Electronic Devices

    17 Sep 2009 | | Contributor(s):: Muhammad A. Alam

  17. Lecture 1: Percolation in Electronic Devices

    04 Nov 2008 | | Contributor(s):: Muhammad A. Alam

    Even a casual review of modern electronics quickly convinces everyone that randomness of geometrical parameters must play a key role in understanding the transport properties. Despite the diversity of these phenomena however, the concepts percolation theory provides a broad theoretical framework...

  18. Lecture 2: General Model for Transport

    28 Jul 2011 | | Contributor(s):: Mark Lundstrom

    Datta's model of a nanodevice is introduced as a general way of describing nanodevices as well, as bulk metals and semiconductors.

  19. Lecture 2: Graphene Fundamentals

    22 Sep 2009 | | Contributor(s):: Supriyo Datta

  20. Lecture 2: Threshold, Islands, and Fractals

    17 Sep 2009 | | Contributor(s):: Muhammad A. Alam