Tags: computational chemistry

Online Presentations (1-15 of 15)

  1. Forces That Govern Life: On the Way to Understanding Intermolecular Interactions

    20 Jul 2017 | | Contributor(s):: Lyudmila V. Slipchenko

    This talk will overview our recent work on the Effective Fragment Potential (EFP) method. EFP is a model potential designed for describing non-covalent interactions. The absence of fitted parameters and a natural partitioning of the interaction energy into Coulomb, polarization, dispersion, and...

  2. Atomistic Simulations of Materials Chemistry: From Nanoelectronics to Energetics

    07 Apr 2015 | | Contributor(s):: Alejandro Strachan

    Presentation slides with embedded videos are available for download. Please see the Support Docs tab.

  3. Chemistry of Transition Metal Alloy Nanoparticles with Desired Phase Properties

    20 Jun 2011 | | Contributor(s):: Lichang Wang

    In this presentation, I will discuss the results of two alloy nanoparticles, PtAu and PtVFe. I will also present the synergetic results of unraveling PtVFe nanoparticles by coupling computational chemistry with experimental work.

  4. Energy and Nanoscience A More Perfect Union

    29 Mar 2009 | | Contributor(s):: Mark Ratner

    Huge problems of energy and sustainability confront the science/engineering community, mankind, and our planet. The energy problem comes in many dimensions, including supply, demand, conservation, transportation, and storage. This overview will stress the nature of these problems, and offer a...

  5. Ionic Selectivity in Channels: complex biology created by the balance of simple physics

    05 Jun 2008 | | Contributor(s):: Bob Eisenberg

    An important class of biological molecules—proteins called ionic channels—conduct ions (like Na+ , K+ , Ca2+ , and Cl− ) through a narrow tunnel of fixed charge (‘doping’). Ionic channels control the movement of electric charge and current across biological membranes and so play a role in...

  6. Dynamics of Quantum Fluids: Path integral and Semiclassical Methods

    21 May 2008 | | Contributor(s):: Nancy Makri

    The interplay of many-body nonlinear interactions and quantum mechanical effects such as zero-point motion or identical particle exchange symmetries lead to intriguing phenomena in low-temperature fluids, some of which remain poorly understood. Recent advances in theory and methodology have...

  7. Calculating Resonances Using a Complex Absorbing Potential

    13 Mar 2008 | | Contributor(s):: Robin Santra

    The Siegert (or Gamow) wave function associated with a resonance state is exponentially divergent at large distances from the scattering target. A complex absorbing potential (CAP) provides a computationally simple and efficient technique for calculating the complex Siegert energy of a resonance...

  8. Exploring Physical and Chemical control of molecular conductance: A computational study

    31 Jan 2008 | | Contributor(s):: Barry D. Dunietz

  9. Dynamics on the Nanoscale: Time-domain ab initio studies of quantum dots, carbon nanotubes and molecule-semiconductor interfaces

    31 Jan 2008 | | Contributor(s):: Oleg Prezhdo

    Device miniaturization requires an understanding of the dynamical response of materials on the nanometer scale. A great deal of experimental and theoretical work has been devoted to characterizing the excitation, charge, spin, and vibrational dynamics in a variety of novel materials, including...

  10. Perspectives on Computational Quantum Chemistry

    20 Dec 2007 | | Contributor(s):: Martin P. Head-Gordon

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of computational science and engineering.

  11. Computational Mathematics: Role, Impact, Challenges

    20 Dec 2007 | | Contributor(s):: Juan C. Meza

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of computational science and engineering.

  12. MCW07 Electronic Level Alignment at Metal-Molecule Contacts with a GW Approach

    05 Sep 2007 | | Contributor(s):: Jeffrey B. Neaton

    Most recent theoretical studies of electron transport in single-molecule junctions rely on a Landauer approach, simplified to treat electron-electron interactions at a mean-field level within density functional theory (DFT). While this framework has proven relatively accurate for certain...

  13. MCW07 Modeling Charging-based Switching in Molecular Transport Junctions

    23 Aug 2007 | | Contributor(s):: Sina Yeganeh, , Mark Ratner

    We will discuss several proposed explanations for the switching and negative differential resistance behavior seen in some molecular junctions. It is shown that a proposed polaron model is successful in predicting both hysteresis and NDR behavior, and the model is elaborated with image charge...

  14. The basics of quantum Monte Carlo

    15 Jun 2007 | | Contributor(s):: Lucas Wagner, Jeffrey C Grossman, Jeffrey B. Neaton

    Quantum Monte Carlo is a highly accurate method to approximately solve the Schrodinger equation. I explain quantum Monte Carlo in a way that should be accessible to someone who is somewhat familiar with quantum mechanics. The discussion is mostly conceptual.Lucas Wagner is a postdoctoral...

  15. Finite Size Scaling and Quantum Criticality

    09 May 2007 | | Contributor(s):: Sabre Kais

    The study of quantum phase transitions, which are driven by quantum fluctuations as a consequence of Heisenberg's uncertainty principle, continues to be of increasing interest in the fields of condensed matter and atomic and molecular physics. In this field we have established an analogy between...