Tags: computational materials science

Resources (1-13 of 13)

  1. AIDA: A tool for exhaustive enumeration of solutions to the quantized Frank-Bilby equation

    08 Jan 2018 | | Contributor(s):: Ali Sangghaleh, Michael J. Demkowicz

    We present a tool called Arrangement of Interface Dislocation Arrays (AIDA) for enumerating all dislocation networks that satisfy the quantized Frank-Bilby equation for any interface between cubic crystals with a single-atom basis, i.e. FCC/FCC, BCC/BCC, and FCC/BCC interfaces. The set of...

  2. Spin Transport Modeling Tool

    21 Aug 2017 | | Contributor(s):: Onur Dincer, Azad Naeemi

    Calculates spin transport parameters in nanoscale metallic interconnects.

  3. Using DFT to Predict the Equilibrium Lattice Parameter and Bulk Modulus of Crystalline Materials

    22 Aug 2017 | | Contributor(s):: André Schleife, Materials Science and Engineering at Illinois

    This activity guides users through the use of DFT calculations with Quantum ESPRESSO in nanoHUB to calculate the total energy of a crystal structure.  By varying the volume of the structure, and calculating the associated energies, the equilibirum structure can be found. Users are...

  4. Using DFT to Simulate the Band Structure and Density of States of Crystalline Materials

    22 Aug 2017 | | Contributor(s):: André Schleife, Materials Science and Engineering at Illinois

    In this activity, DFT is used to simulate the band structure and density of states of several crystalline semiconductors.  Users are instructed in how to use the Bilbao Crystallographic Server to select a path through the Brillouin zone for each structure.This activity is adapted from an...

  5. Comparing the Operation of p-i-n vs. p-n Junction Diodes Using PN Junction Lab in ABACUS

    22 Aug 2017 | | Contributor(s):: André Schleife, Materials Science and Engineering at Illinois

    In this activity, students use the PN Junction Lab simulation tool in ABACUS on nanoHUB to simulate different p-i-n or p-n diode structures.  Plots of hole concentration and electric field as a function of position, along with the gand structure with and without applied bias, will be...

  6. Computer Modeling Module: Chemical Reaction Simulation using SIESTA

    22 Aug 2017 | | Contributor(s):: Lan Li

    This activity guides students through a module using the SIESTA DFT tool that is housed within the MIT Atomic Scale Modeling Toolkit on nanoHUB. Instructional videos, background reading, reminders and the assignment are included.Learning outcomes:Get familiar with SIESTA tool and activation...

  7. mage:ic:kinetics1 - Diffusion in 1D and 3D

    10 Mar 2014 | | Contributor(s):: Michael L. Falk

    This module guides students through two analyses of diffusion problems using the COMSOL finite element software. Students are then asked to use what they have learned to guide the design of a drug delivery device.Disciplinary Goals: Understand mass transport in 1D and 3D, effects of boundary...

  8. [Illinois] CSE Seminar Series: Advances in First-principles Computational Materials Science

    20 Nov 2012 | | Contributor(s):: Elif Ertekin

    Title: Advances in first-principles computational materials scienceSubtitle: Things we can calculate now, that we couldn't when I was in grad school.The capability to rationally design new materials with tailored properties and functionality on a computer remains a grand challenge whose success...

  9. nanoMATERIALS nanoscale heat transport

    03 Nov 2010 | | Contributor(s):: Keng-Hua Lin, Sean Sullivan, Mathew Joseph Cherukara, Alejandro Strachan, Tianli Feng, Xiulin Ruan, Bo Qiu

    Non-equilibrium MD simulations of heat transport in nano-materials

  10. Atomic Picture of Plastic Deformation in Metals via Online Molecular Dynamics Simulations

    18 Dec 2009 | | Contributor(s):: Alejandro Strachan

    The main goal of this learning module is to introduce students to the atomic-level processes responsible for plastic deformation in crystalline metals and help them develop a more intuitive understanding of how materials work at molecular scales. The module consists of: i) Two introductory...

  11. NCN, nanoHUB, HUBzero: cyberinfrastructure for nanotechnology

    13 May 2010 | | Contributor(s):: Mark Lundstrom

    Presentation made at the Workshop to Develop the Global Nanotechnology Network, Grenoble, France.

  12. Computer in Science Engineering: featuring nanoHUB.org

    20 Apr 2010 |

    The current issue of Computing in Science and Engineering focuses on cyber-enabled nanotechnology, and nanoHUB.org is featured extensively throughout.

  13. NCN Nanomaterials: Simulation Tools for Education

    02 Jun 2009 |