Tags: device physics

Resources (41-60 of 111)

  1. Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?

    29 Aug 2011 | | Contributor(s):: Muhammad A. Alam

    Thin film solar cells promise acceptable efficiency at low cost. This tutorial examines the device physics of thin-film solar cells, which generally require a different type of analysis than crystalline solar cells.

  2. Solar Cells Lecture 5: Organic Photovoltaics

    29 Aug 2011 | | Contributor(s):: Muhammad A. Alam

    Organic solar cells make use of low-cost organic polymers for photovoltaics. Although these solar cells may appear to be quite different from solar cells made with conventional, inorganic semiconductors (e.g. they make use of exciton generation rather than electron-hole generation) this tutorial...

  3. Solar Cell Fundamentals

    19 Aug 2011 | | Contributor(s):: Mark Lundstrom, J. L. Gray, Muhammad A. Alam

    A new version of the course has been posted here.  The modern solar cell was invented at Bell Labs in 1954 and is currently receiving renewed attention as a potential contribution to addressing the world's energy challenge. This set of five tutorials is an introduction to solar...

  4. Physics of Current and Future Devices

    27 Jun 2011 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This set of powerpoint slides is part of a series Nanoelectronics and Modeling at the Nanoscale. It gives a glimpse on effects that occur in current and future nanoscale devices that have to be properly captured with appropriate physical models.

  5. Lecture 7: On Reliability and Randomness in Electronic Devices

    14 Apr 2010 | | Contributor(s):: Muhammad A. Alam

    Outline:Background informationPrinciples of reliability physicsClassification of Electronic ReliabilityStructure Defects in Electronic MaterialsConclusions

  6. Lecture 9: Breakdown in Thick Dielectrics

    05 Apr 2010 | | Contributor(s):: Muhammad A. Alam

    Outline:Breakdown in gas dielectric and Paschen’s lawSpatial and temporal dynamics during breakdownBreakdown in bulk oxides: puzzleTheory of pre-existing defects: Thin oxidesTheory of pre-existing defects: thick oxidesConclusions

  7. Lecture 8: Mechanics of Defect Generation and Gate Dielectric Breakdown

    10 Mar 2010 | | Contributor(s):: Muhammad A. Alam

  8. Illinois ECE 440 Solid State Electronic Devices, Lecture 22&23: P-N Junction Capacitance; Contacts

    07 Mar 2010 | | Contributor(s):: Eric Pop

  9. Illinois ECE 440 Solid State Electronic Devices, Lecture 24: Narrow-base P-N Diode

    07 Mar 2010 | | Contributor(s):: Eric Pop

  10. Illinois ECE 440 Solid State Electronic Devices, Lecture 25: Intro to BJT

    07 Mar 2010 | | Contributor(s):: Eric Pop

  11. Illinois ECE 440 Solid State Electronic Devices, Lecture 26: Narrow-base BJT

    07 Mar 2010 | | Contributor(s):: Eric Pop

  12. Illinois ECE 440 Solid State Electronic Devices, Lecture 27: BJT Gain

    07 Mar 2010 | | Contributor(s):: Eric Pop

  13. Illinois ECE 440 Solid State Electronic Devices, Lecture 21: P-N Diode Breakdown

    07 Mar 2010 | | Contributor(s):: Eric Pop

  14. Semiconductor Device Theory Exercises

    30 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck, Mark Lundstrom

    This collection of problems should help the students to better understand Semiconductor Device Physics on a fundamental and more complex level. Crystal lattices and Miller indiciesFrom 1 well to 2 wells to 5 wells to periodic potentialsPeriodic potentials and bandstructureBandstructure...

  15. Lecture 10: Interface Damage & Negative Bias Temperature Instability

    29 Jul 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Background informationNBTI interpreted by R-D modelThe act of measurement and observed quantityNBTI vs. Light-induced DegradationPossibility of Degradation-free TransistorsConclusions

  16. Illinois ECE 440: Solid State Electronic Devices Homework Assignments (Fall 2009)

    28 Jan 2010 | | Contributor(s):: Mohamed Mohamed

    Homework assignments for the Fall 2009 teaching of Illinois ECE 440: Solid State Electronic Devices.

  17. Illinois Tools: Basic Bulk Silicon Transport Data at 300K

    27 Oct 2009 | | Contributor(s):: Kyeong-hyun Park, Mohamed Mohamed, Nahil Sobh, Fawad Hassan

    Calculations of doped bulk silicon transport data (new version release)

  18. Illinois ECE 440 Solid State Electronic Devices, Lecture 20: P-N Diode in Reverse Bias

    30 Oct 2009 | | Contributor(s):: Eric Pop

    Recap diode (forward, zero, reverse) bias diagrams.Recap some of the equations.

  19. 2009 NCN@Purdue Summer School: Electronics from the Bottom Up

    09 Jul 2009 | | Contributor(s):: Supriyo Datta, Mark Lundstrom, Muhammad A. Alam, Joerg Appenzeller

    The school will consist of two lectures in the morning on the Nanostructured Electronic Devices: Percolation and Reliability and an afternoon lecture on Graphene Physics and Devices. A hands on laboratory session will be available in the afternoons.

  20. Colloquium on Graphene Physics and Devices

    29 Jul 2009 | | Contributor(s):: Joerg Appenzeller, Supriyo Datta, Mark Lundstrom

    This short course introduces students to graphene as a fascinating research topic as well as to develop their skill in problem solving using the tools and techniques of electronics from the bottom up.