Tags: device physics

Resources (1-20 of 111)

  1. 2009 NCN@Purdue Summer School: Electronics from the Bottom Up

    22 Sep 2009 | | Contributor(s):: Supriyo Datta, Mark Lundstrom, Muhammad A. Alam, Joerg Appenzeller

    The school will consist of two lectures in the morning on the Nanostructured Electronic Devices: Percolation and Reliability and an afternoon lecture on Graphene Physics and Devices. A hands on laboratory session will be available in the afternoons.

  2. Carbon Nanotube Electronics: Modeling, Physics, and Applications

    28 Jun 2013 | | Contributor(s):: Jing Guo

    In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias transport can be nearly ballistic across distances of several hundred nanometers. Deposition of high-k gate...

  3. Colloquium on Graphene Physics and Devices

    22 Sep 2009 | | Contributor(s):: Joerg Appenzeller, Supriyo Datta, Mark Lundstrom

    This short course introduces students to graphene as a fascinating research topic as well as to develop their skill in problem solving using the tools and techniques of electronics from the bottom up.

  4. Computational and Experimental Study of Transport in Advanced Silicon Devices

    28 Jun 2013 | | Contributor(s):: Farzin Assad

    In this thesis, we study electron transport in advanced silicon devices by focusing on the two most important classes of devices: the bipolar junction transistor (BJT) and the MOSFET. In regards to the BJT, we will compare and assess the solutions of a physically detailed microscopic model to...

  5. Device Physics Studies of III-V and Silicon MOSFETS for Digital Logic

    28 Jun 2013 | | Contributor(s):: Himadri Pal

    III-V's are currently gaining a lot of attraction as possible MOSFET channel materials due to their high intrinsic mobility. Several challenges, however, need to be overcome before III-V's can replace silicon (Si) in extremely scaled devices. The effect of low density-of-states of III-V...

  6. Direct Solution of the Boltzmann Transport Equation in Nanoscale Si Devices

    28 Jun 2013 | | Contributor(s):: Kausar Banoo

    Predictive semiconductor device simulation faces a challenge these days. As devices are scaled to nanoscale lengths, the collision-dominated transport equations used in current device simulators can no longer be applied. On the other hand, the use of a better, more accurate Boltzmann Transport...

  7. ECE 606 Lecture 10: Additional Information

    16 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Potential, field, and chargeE-k diagram vs. band-diagramBasic concepts of donors and acceptorsConclusion

  8. ECE 606 Lecture 10: Shockley, Reed, Hall and other Recombinations

    30 Sep 2012 | | Contributor(s):: Gerhard Klimeck

  9. ECE 606 Lecture 11: Equilibrium Statistics

    16 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Law of mass-action & intrinsic concentration Statistics of donors and acceptor levelsConclusion

  10. ECE 606 Lecture 11: Interface States Recombination/Carrier Transport

    10 Oct 2012 | | Contributor(s):: Gerhard Klimeck

  11. ECE 606 Lecture 12: Equilibrium Concentrations

    16 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Carrier concentrationTemperature dependence of carrier concentrationMultiple doping, co-doping, and heavy-dopingConclusion

  12. ECE 606 Lecture 12: High Field, Mobility, Hall Effect, Diffusion

    10 Oct 2012 | | Contributor(s):: Gerhard Klimeck

  13. ECE 606 Lecture 13 : Solutions of the Continuity Equations - Analytical & Numerical

    12 Oct 2012 | | Contributor(s):: Gerhard Klimeck

  14. ECE 606 Lecture 13: Recombination-Generation

    16 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Non-equilibrium systemsRecombination generation eventsSteady-state and transient responseDerivation of R-G formulaConclusion

  15. ECE 606 Lecture 13a: Fermi Level Differences for Metals and Semiconductors

    16 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Short chalkboard lecture on Fermi level and band diagram differences for metals and semiconductors.

  16. ECE 606 Lecture 14: p-n Junctions

    04 Oct 2012 | | Contributor(s):: Gerhard Klimeck

  17. ECE 606 Lecture 15: p-n Diode Characteristics

    17 Oct 2012 | | Contributor(s):: Gerhard Klimeck

  18. ECE 606 Lecture 16: Carrier Transport

    23 Feb 2009 | | Contributor(s):: Muhammad A. Alam

  19. ECE 606 Lecture 16: p-n Diode AC Response

    24 Oct 2012 | | Contributor(s):: Gerhard Klimeck

  20. ECE 606 Lecture 17: Hall Effect, Diffusion

    24 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Measurement of mobilityHall Effect for determining carrier concentrationPhysics of diffusionConclusions