Tags: devices

Description

On June 30, 1948, AT&T Bell Labs unveiled the transitor to the world, creating a spark of explosive economic growth that would lead into the Information Age. William Shockley led a team of researchers, including Walter Brattain and John Bardeen, who invented the device. Like the existing triode vacuum tube device, the transistor could amplify signals and switch currents on and off, but the transistor was smaller, cheaper, and more efficient. Moreover, it could be integrated with millions of other transistors onto a single chip, creating the integrated circuit at the heart of modern computers.

Today, most transistors are being manufactured with a minimum feature size of 60-90nm--roughly 200-300 atoms. As the push continues to make devices even smaller, researchers must account for quantum mechanical effects in the device behavior. With fewer and fewer atoms, the positions of impurities and other irregularities begin to matter, and device reliability becomes an issue. So rather than shrink existing devices, many researchers are working on entirely new devices, based on carbon nanotubes, spintronics, molecular conduction, and other nanotechnologies.

Learn more about transistors from the many resources on this site, listed below. Use our simulation tools to simulate performance characteristics for your own devices.

All Categories (101-120 of 359)

  1. ECE 606 Lecture 6: Bandgap, Mass Measurements and Fermi-Dirac Statistics

    28 Sep 2012 | | Contributor(s):: Gerhard Klimeck

  2. ECE 606 Lecture 6: Energy Bands (continued)

    04 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Properties of electronic bandsE-k diagram and constant energy surfacesConclusions

  3. ECE 606 Lecture 7: Energy Bands in Real Crystals

    04 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:E-k diagram/constant energy surfaces in 3D solidsCharacterization of E-k diagram: BandgapCharacterization of E-k diagram: Effective MassConclusions

  4. ECE 606 Lecture 7: Intrinsic semiconductors and Concepts of Doping

    28 Sep 2012 | | Contributor(s):: Gerhard Klimeck

  5. ECE 606 Lecture 8: Density of States

    04 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Calculation of density of statesDensity of states for specific materialsCharacterization of Effective MassConclusions

  6. ECE 606 Lecture 8: Temperature Dependent Carrier Density Concepts of Recombination

    28 Sep 2012 | | Contributor(s):: Gerhard Klimeck

  7. ECE 606 Lecture 9: Fermi-Dirac Statistics

    04 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Rules of filling electronic statesDerivation of Fermi-Dirac Statistics: three techniquesIntrinsic carrier concentrationConclusion

  8. ECE 606 Lecture 9: Recombination Process and Rates

    28 Sep 2012 | | Contributor(s):: Gerhard Klimeck

  9. ECE 606 Solid State Devices - new version here https://nanohub.org/courses/ECE606/2020x/outline

    10 Oct 2012 | | Contributor(s):: Gerhard Klimeck

    I newer version of this course is released herehttps://nanohub.org/courses/ECE606/2020x/outline ------- Note: to access these lectures please login or create an account.This course provides the graduate-level introduction to understand, analyze, characterize and...

  10. ECE 606: Principles of Semiconductor Devices

    12 Nov 2008 | | Contributor(s):: Muhammad A. Alam

    In the last 50 years, solid state devices like transistors have evolved from an interesting laboratory experiment to a technology with applications in all aspects of modern life. Making transistors is a complex process that requires unprecedented collaboration among material scientists, solid...

  11. ECE 612 Introductory Lecture (Fall 06)

    08 Aug 2006 | | Contributor(s):: Mark Lundstrom

  12. ECE 612 Lecture 1: MOSFET Review

    08 Aug 2006 | | Contributor(s):: Mark Lundstrom

  13. ECE 612 Lecture 20: Broad Overview of Reliability of Semiconductor MOSFET

    14 Nov 2008 | | Contributor(s):: Muhammad A. Alam

    Guest lecturer: Muhammad A. Alam.

  14. ECE 612 Lecture 3: 1D MOS Electrostatics

    08 Aug 2006 | | Contributor(s):: Mark Lundstrom

  15. ECE 612 Nanoscale Transistors (Fall 2006)

    08 Aug 2006 | | Contributor(s):: Mark Lundstrom

    Additional material related to the topics discussed in this course course is available at https://nanohub.org/courses/NTNanoscale Transistors is a five-week online course that develops a unified framework for understanding essential physics of nanoscale transistors, their important...

  16. ECE 695A Lecture 1: Reliability of Nanoelectronic Devices

    11 Jan 2013 | | Contributor(s):: Muhammad Alam

    Outline:Evolving Landscape of ElectronicsPerformance, Variability, and ReliabilityClassification of ReliabilityCourse InformationConclusions

  17. ECE 695A Reliability Physics of Nanotransistors

    17 Jan 2013 | | Contributor(s):: Muhammad Alam

    This course will focus on the physics of reliability of small semiconductor devices. In traditional courses on device physics, the students learn how to compute current through a device when a voltage is applied.

  18. EDA Challenges in Nanoscale Design: A Synopsys Perspective

    11 Apr 2006 | | Contributor(s):: Rich Goldman

    Rich Goldman gives an overview of the current state ofthe semiconductor and EDA (Electronic Design Automation) industry with aspecial focus on the impact of nanometer scale design on design tools andthe economics of the industry.

  19. Electron and Ion Microscopies as Characterization Tools for Nanoscience and Nanotechnology

    27 Feb 2006 | | Contributor(s):: Eric Stach

    This tutorial presents a broad overview of the basic physical principles of techniques used in scanning electron microscopy (SEM), as well as their application to understanding processing/structure/property relationships in nanostructured materials. Special emphasis is placed on the capabilities...

  20. Electron Phonon Interaction in Carbon Nanotube Devices

    27 Jun 2013 | | Contributor(s):: Sayed Hasan

    With the end of silicon technology scaling in sight, there has been a lot of interest in alternate novel channel materials and device geometry. Carbon nanotubes, the ultimate one-dimensional (1D) wire, is one such possibility. Since the report of the first CNT transistors, lots has been learned...