Tags: general tools

Resources (1-20 of 30)

  1. Mystery Molecules: Identifying Materials with Nanoscale Characterization Tools

    18 Mar 2020 | | Contributor(s):: Maude Cuchiara, NNCI Nano

     In this lesson plan, students will be given several similar looking materials and asked to identify them by observing them at the macro and micro-scale. They will then be exposed to different analytical tools and describe how they can be used to explore materials at the nanoscale. ...

  2. The Pinch Test: The Right Tool for the Right Object

    21 Jan 2020 | | Contributor(s):: Pamela Gilbert-Smith, NNCI Nano

    This lesson will be used to assess student knowledge of size or SI prefixes and which equipment/tools you would need to view objects of particular sizes. The lesson can be used to see how much students know before teaching; to introduce them to the topic; or to assess what they have learned...

  3. [Illinois] Genetic Engineering for Nisin Diffusion and Tool Walkthrough

    30 Jul 2013 | | Contributor(s):: Asha Kirchhoff

    In this video Illinois Bioengineering student Asha Kirchhoff discusses the fundamentals behind the Biomedical Engineering Society's Nisin Diffusion experiment and setup for Engineering Open House. She also provides a walkthrough for the Nisin Diffusion tool hosted here at Nanohub.org.

  4. Atomistic Alloy Disorder in Nanostructures

    26 Feb 2007 | | Contributor(s):: Gerhard Klimeck

    Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and discrete states. But what if the material is fundamentally disordered? What if the disorder is at the...

  5. Technique for High Spatial Resolution, Focused Electrical Stimulation for Electrically Excitable Tissue

    08 Aug 2006 | | Contributor(s):: Matteo Mannino

    Cochlear implant devices have made use of electrode pulses as a method of nerve fiber stimulation since their early conception. Electrode stimulation is limiting in both quality and consistency, and a new method is required if significant improvements to implant devices are to be made. By using a...

  6. Exploring Electron Transfer with Density Functional Theory

    11 Jun 2006 | | Contributor(s):: Troy Van Voorhis

    This talk will highlight several illustrative applications of constrained density functionaltheory (DFT) to electron transfer dynamics in electronic materials. The kinetics of thesereactions are commonly expressed in terms of well known Marcus parameters (drivingforce, reorganization energy and...

  7. Vector Free Energy Calculation with Adaptive Biasing Force

    18 Jun 2006 | | Contributor(s):: Eric F Darve

    This presentation discusses recent numerical methods to calculate thefree energy as a function of a reaction coordinate for bio-molecules.Free energy is often called potential of mean force and represents theeffective potential experienced by a generalized coordinate for abio-molecular system....

  8. Molecular Dynamics Simulations with the Second-Generation Reactive Empirical Bond Order (REBO) Potential

    02 Apr 2006 | | Contributor(s):: Wen-Dung Hsu, Susan Sinnott

    In this presentation, the molecular dynamics (MD) simulation will be introduced first. The applications of MD simulation, the procedure of MD simulation and some speed-up methods in MD simulation will be talked. Then the bond order potentials which are capable to predict bond breaking and new...

  9. Workspace

    21 Apr 2006 |

    Development workspace

  10. First Principles-Based Modeling of materials: Towards Computational Materials Design

    20 Apr 2006 | | Contributor(s):: Alejandro Strachan

    Molecular dynamics (MD) simulations with accurate, first principles-based interatomic potentials is a powerful tool to uncover and characterize the molecular-level mechanisms that govern the chemical, mechanical and optical properties of materials. Such fundamental understanding is critical to...

  11. EDA Challenges in Nanoscale Design: A Synopsys Perspective

    11 Apr 2006 | | Contributor(s):: Rich Goldman

    Rich Goldman gives an overview of the current state ofthe semiconductor and EDA (Electronic Design Automation) industry with aspecial focus on the impact of nanometer scale design on design tools andthe economics of the industry.

  12. Tutorial on Using Micelle-MD

    05 Apr 2006 | | Contributor(s):: Patrick Chiu, Kunal Shah, Susan Sinnott

    This is a tutorial using Micelle-MD. This includes the main capabilities, computation procedure, with format of files generated, and the simulation setup, which includes the material models implemented.

  13. Mechanical Properties of Surfactant Aggregates at Water-Solid Interfaces

    05 Apr 2006 | | Contributor(s):: Patrick Chiu, Kunal Shah, Susan Sinnott

    This is a talk on the mechanical properties of surfactant aggregates at water-solid interfaces using Micelle-MD. This includes silica indentations of micelles with comparison to experimental data and graphite indentation of Micelle.

  14. A Primer on Scanning Tunneling Microscopy (STM)

    04 Apr 2006 | | Contributor(s):: Ron Reifenberger

    Scanning Probe Microscopes and their remarkable ability to provide three-dimensional maps of surfaces at the nanometer length scale have arguably been the most important tool in establishing the world-wide emergence of Nanotechnology. In this talk, the fundamental ideas behind the first scanning...

  15. Thermal Microsystems for On-Chip Thermal Engineering

    04 Apr 2006 | | Contributor(s):: Suresh V. Garimella

    Electro-thermal co-design at the micro- and nano-scales is critical for achieving desired performance and reliability in microelectronic circuits. Emerging thermal microsystems technologies for this application area are discussed, with specific examples including a novel micromechanical...

  16. Electron and Ion Microscopies as Characterization Tools for Nanoscience and Nanotechnology

    27 Feb 2006 | | Contributor(s):: Eric Stach

    This tutorial presents a broad overview of the basic physical principles of techniques used in scanning electron microscopy (SEM), as well as their application to understanding processing/structure/property relationships in nanostructured materials. Special emphasis is placed on the capabilities...

  17. The nanoHUB Science Gateway

    07 Mar 2006 | | Contributor(s):: Sebastien Goasguen

    The TeraGrid Science Gateways program was initiated to expand the influence of TeraGrid resources through back-end integration into community developed portals and desktop applications. Nancy Wilkins-Diehr, SDSC, TeraGrid Area Director for Science Gateways will give a brief overview of the...

  18. Molecular Transport Structures: Elastic Scattering, Vibronic Effects and Beyond

    13 Feb 2006 | | Contributor(s):: Mark Ratner, Abraham Nitzan, Misha Galperin

    Current experimental efforts are clarifying quite beautifully the nature of charge transport in so-called molecular junctions, in which a single molecule provides the channel for current flow between two electrodes. The theoretical modeling of such structures is challenging, because of the...

  19. A Gentle Introduction to Nanotechnology and Nanoscience

    13 Feb 2006 | | Contributor(s):: Mark Ratner

    While the Greek root nano just means dwarf, the nanoscale has become a giant focus of contemporary science and technology. We will examine the fundamental issues underlying the excitement involved in nanoscale research - what, why and how. Specific topics include assembly, properties,...

  20. An Overview of Virtualization Techniques

    03 Feb 2006 | | Contributor(s):: Renato Figueiredo

    This presentation presents an introduction to resource virtualizationtechniques, which are one of the foundations of the infrastructure foronline simulation provided by the nanoHUB.