Tags: metamaterials

Description

Metamaterials are artificial materials engineered to provide properties which may not be readily available in nature. These materials usually gain their properties from structure rather than composition, using the inclusion of small inhomogeneities to enact effective macroscopic behavior.

Learn more about quantum dots from the many resources on this site, listed below. More information on Metamaterials can be found here.

Online Presentations (1-20 of 39)

  1. 2010 Nano-Biophotonics Summer School @ UIUC Lecture 15 - Foundation of Nanophotonics

    04 Jan 2011 | | Contributor(s):: Kent D Choquette

  2. 2010 Nano-Biophotonics Summer School @ UIUC Lecture 16 - Plasmonics and Metamaterials

    04 Jan 2011 | | Contributor(s):: Nick Fang

  3. 2010 Nano-Biophotonics Summer School @ UIUC Lecture 28 - Molding the Flow of Light and Sound With Metamaterials

    27 Jan 2011 | | Contributor(s):: Nick Fang

  4. 3D and 2D Metamaterials at Infrared Optical Frequencies

    24 Jun 2012 | | Contributor(s):: Igal Brener, Mohammad Mayy, Amanda Harding

    Metamaterials (MM) provide for new ways of manipulating light and achieving complex functionality due to the ability to control the spatial distribution of the permittivity and permeability. This full functionality usually requires complex 3D assemblies of subwavelength resonators that are very...

  5. Active Optical Antennas and Metasurfaces

    10 Nov 2016 | | Contributor(s):: Mark Brongersma

  6. BNC Annual Research Review: Transforming Light with Metamaterials

    15 Feb 2010 | | Contributor(s):: Vladimir M. Shalaev

    One of the most unique properties of light is that it can package information into a signal of zero mass and propagate it at the ultimate speed. It is, however, a daunting challenge to bring photonic devices to the nanometer scale because of the fundamental diffraction limit. Metamaterials can...

  7. Coherent Nonlinear Optical Propagation Processes in Hyperbolic Metamaterials

    08 Jun 2017 | | Contributor(s):: Alexander K. Popov

    Coherence and interference play an important role in classic and quantum physics. Processes to be employed can be significantly enhanced and the unwanted ones suppressed through the deliberately tailored constructive and destructed interference at quantum transitions and at nonlinear optical...

  8. Developments in Metamaterials and Transformation Optics

    29 Mar 2010 | | Contributor(s):: David R. Smith

    Metamaterials—artificially structured microcircuits that can mimic the electromagnetic response of atoms and molecules—have vastly expanded the opportunities available for the design of electromagnetic structures. Starting in 2000 with the first report of a “left-handed” metamaterial, for which...

  9. Digitizing and Functionalizing Metamaterials

    15 Jan 2013 | | Contributor(s):: Nader Engheta

    This talk is part of the International Workshop "Novel Ideas in Optics: From Advanced Materials to Revolutionary Applications" hosted by Purdue University.

  10. ECE 695s Lecture 14: Metamaterials: Giving Light the Second Hand, Part 1

    15 Nov 2006 | | Contributor(s):: Vladimir M. Shalaev

    A subsequent version of this lecture is available in a three lecture short course Metamaterials: A New Paradigm of Physics and Engineering.

  11. ECE 695s Lecture 15: Metamaterials: Giving Light the Second Hand, Part 2

    20 Nov 2006 | | Contributor(s):: Vladimir M. Shalaev

    A subsequent version of this lecture is available in a three lecture short course Metamaterials: A New Paradigm of Physics and Engineering.

  12. Illinois 2009 nano-biophotonics Summer School, Lecture 11: Plasmonics, Metamaterials

    27 Oct 2009 | | Contributor(s):: Nick Fang

    Plasmonics, Meta-MaterialsTopics: New Frontiers of Photonics What Are Meta-Materials? Electromagnetic Meta-Materials Effective Medium Properties Plasmonic "Atoms" and "Crystals" Plasmonic Response Physics of Surface Plasmon Artificial Magnetism Split Ring Resonators The Swiss Roll Structure...

  13. Is Graphene Alone in the Universe?

    30 Nov 2012 | | Contributor(s):: Jacob B. Khurgin

    In this talk we show that many heterostructures based on III-V (InGaSb) and II-VI (HgCdTe) semiconductors can be engineered to have all the above properties nearly indistinguishable from those of graphene, while adding certain degree of versatility, such as ability to have not only...

  14. Laser Filtering, Metamaterials, and Commercializing Through the Lens of the Mythical Person Month

    06 Jan 2017 | | Contributor(s):: Themos Kallos

    In this work we investigate whether optical metamaterials in particular may require more than the typical resources to lead to successful commercialization. We also compare the estimated efforts with other technology commercialization projects of the recent past. ...

  15. Light Matter Interfaces for NV Center in Diamond

    01 Apr 2016 | | Contributor(s):: Alexey V Akimov

    The NV center in diamond is attracting a lot of attention within the quantum information processing community. As a spin system in a clean and well-controlled environment of the diamond lattice, it exhibits outstanding performance as a quantum memory, even at room temperature....

  16. McCoy Lecture: Transforming Light with Metamaterials: A New Paradigm for the Science of Light

    19 Dec 2009 | | Contributor(s):: Vladimir M. Shalaev

    One of the most unique properties of light is that it can package information into a signal of zero mass and propagate it at the ultimate speed. It is, however, a daunting challenge to bring photonic devices to the nanometer scale because of the fundamental diffraction limit. Metamaterials can...

  17. Metamaterials with low loss and gain

    27 Jan 2010 | | Contributor(s):: Mikhail A. Noginov

    Optical loss caused by absorption in metal and a need for active control are among the major challenges of plasmonic metamaterials. Both can be addressed by utilizing optical gain. Recent efforts aimed at the reduction of loss and the stimulated emission in nanoplasmonic systems with gain will...

  18. Metamaterials, Part 1: Electrical and Magnetic Metamaterials

    01 May 2008 | | Contributor(s):: Vladimir M. Shalaev

    Part 1/3. Metamaterials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials, thus enabling a family of new “meta-devices”. In these three lectures, we review this new emerging field and significant progress...

  19. Metamaterials, Part 2: Negative-Index, Nonlinear Optics and Super/Hyper-Lenses

    01 May 2008 | | Contributor(s):: Vladimir M. Shalaev

    Part 2/3. Metamaterials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials, thus enabling a family of new “meta-devices”. In these three lectures, we review this new emerging field and significant progress...

  20. Metamaterials, Part 3: Cloaking and Transformation Optics

    01 May 2008 | | Contributor(s):: Vladimir M. Shalaev

    Part 3/3. Metamaterials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials, thus enabling a family of new “meta-devices”. In these three lectures, we review this new emerging field and significant progress...