Tags: molecular dynamics

Description

Molecular dynamics is a form of computer simulation in which atoms and molecules are allowed to interact for a period of time by approximations of known physics, giving a view of the motion of the particles. This kind of simulation is frequently used in the study of proteins and biomolecules, as well as in materials science. More information on Molecular dynamics can be found here.

Presentation Materials (1-13 of 13)

  1. Applying Machine Learning to Computational Chemistry: Can We Predict Molecular Properties Faster without Compromising Accuracy?

    14 Aug 2017 | Presentation Materials | Contributor(s): Hanjing Xu, Pradeep Kumar Gurunathan

    Non-covalent interactions are crucial in analyzing protein folding and structure, function of DNA and RNA, structures of molecular crystals and aggregates, and many other processes in the fields...

    https://nanohub.org/resources/26904

  2. Fundamentals of Phonon Transport Modeling L1: Introduction

    04 Jan 2017 | Presentation Materials | Contributor(s): Alan McGaughey, Xiulin Ruan

    Part of the 2016 IMECE Tutorial: Fundamentals of Phonon Transport Modeling: Formulation, Implementation, and Applications.

    https://nanohub.org/resources/25501

  3. Fundamentals of Phonon Transport Modeling L2: MD Simulation, Green Kubo, Direct Method

    04 Jan 2017 | Presentation Materials | Contributor(s): Xiulin Ruan, Alan McGaughey

    Part of the 2016 IMECE Tutorial: Fundamentals of Phonon Transport Modeling: Formulation, Implementation, and Applications.

    https://nanohub.org/resources/25502

  4. Lecture 10: Non Equilibrium MD

    05 Jan 2010 | Presentation Materials | Contributor(s): Ashlie Martini

    Topics: Calculating transport coefficient Shear flow Perturbation methods

    https://nanohub.org/resources/8125

  5. Lecture 9: Dynamic Properties

    05 Jan 2010 | Presentation Materials | Contributor(s): Ashlie Martini

    Topics: Time correlation functions Einstein relations Green-Kubo relations

    https://nanohub.org/resources/8124

  6. Lecture 8: Static Properties

    05 Jan 2010 | Presentation Materials | Contributor(s): Ashlie Martini

    Topics: Thermodynamic properties Entropic properties Static structure

    https://nanohub.org/resources/8123

  7. Lecture 7: Initialization and Equilibrium

    05 Jan 2010 | Presentation Materials | Contributor(s): Ashlie Martini

    Topics: Initial positions Initial velocities Evaluating equilibrium

    https://nanohub.org/resources/8122

  8. Lecture 6: Neighbor Lists

    05 Jan 2010 | Presentation Materials | Contributor(s): Ashlie Martini

    Topics: Saving simulation time Verlet lists Cell lists

    https://nanohub.org/resources/8121

  9. Lecture 5: Boundary Conditions

    05 Jan 2010 | Presentation Materials | Contributor(s): Ashlie Martini

    Topics: Fixed boundaries Periodic boundary conditions Minimum image distance

    https://nanohub.org/resources/8120

  10. Lecture 4: Temperature Control

    05 Jan 2010 | Presentation Materials | Contributor(s): Ashlie Martini

    Topics: Velocity scaling Heat bath/reservoir Stochastic methods

    https://nanohub.org/resources/8119

  11. Lecture 3: Integration Algorithms

    05 Jan 2010 | Presentation Materials | Contributor(s): Ashlie Martini

    Topics: General guidelines Verlet algorithm Predictor-corrector methods

    https://nanohub.org/resources/8118

  12. Lecture 2: Potential Energy Functions

    05 Jan 2010 | Presentation Materials | Contributor(s): Ashlie Martini

    Topics: Pair potentials Coulomb interactions Embedded atom model Intra-molecular interactions (bond, angle, torsion)

    https://nanohub.org/resources/8117

  13. Lecture 1: Basic Concepts

    05 Jan 2010 | Presentation Materials | Contributor(s): Ashlie Martini

    Topics: What is MD Newton’s law Basic concepts and terminology

    https://nanohub.org/resources/7795