Tags: molecular dynamics (MD)

Description

Molecular dynamics is a form of computer simulation in which atoms and molecules are allowed to interact for a period of time by approximations of known physics, giving a view of the motion of the particles. This kind of simulation is frequently used in the study of proteins and biomolecules, as well as in materials science. More information on Molecular dynamics can be found here.

Resources (121-140 of 185)

  1. Atomic Stick-Slip

    09 Nov 2009 | | Contributor(s):: Ashlie Martini, Jianguo Wu

    Molecular dynamics simulation of atomic stick-slip friction

  2. Atomic Picture of Plastic Deformation in Metals: Overview Lecture

    18 Dec 2009 | | Contributor(s):: Alejandro Strachan

    The lecture describes the objectives of the learning module and provides the necessary background for the activities. We briefly discuss the following topics:mechanical response of macroscopic polycrystalline metals during tensile testsmolecular dynamics simulations of materialsmechanical...

  3. Atomic Picture of Plastic Deformation in Metals: Prelab Lecture

    18 Dec 2009 | | Contributor(s):: Alejandro Strachan

    This lecture provides a detailed description of the activities the students will perform in the lab. We present a tutorial with step by step instructions on how to run MD simulations using the nano-Materials Simulation Toolkit. This lecture is part of the learning module Atomic Picture of Plastic...

  4. Atomic Picture of Plastic Deformation in Metals: Lab Assignment Handout

    19 Jan 2010 | | Contributor(s):: Alejandro Strachan

    In this lab students will perform online molecular dynamics (MD) simulations of metallic nanowires deformed uniaxially and analyze the results...

  5. Lecture 10: Non Equilibrium MD

    05 Jan 2010 | | Contributor(s):: Ashlie Martini

    Topics:Calculating transport coefficientShear flowPerturbation methods

  6. Lecture 9: Dynamic Properties

    05 Jan 2010 | | Contributor(s):: Ashlie Martini

    Topics:Time correlation functionsEinstein relationsGreen-Kubo relations

  7. Lecture 8: Static Properties

    05 Jan 2010 | | Contributor(s):: Ashlie Martini

    Topics:Thermodynamic propertiesEntropic propertiesStatic structure

  8. Lecture 7: Initialization and Equilibrium

    05 Jan 2010 | | Contributor(s):: Ashlie Martini

    Topics:Initial positionsInitial velocitiesEvaluating equilibrium

  9. Lecture 6: Neighbor Lists

    05 Jan 2010 | | Contributor(s):: Ashlie Martini

    Topics:Saving simulation timeVerlet listsCell lists

  10. Lecture 5: Boundary Conditions

    05 Jan 2010 | | Contributor(s):: Ashlie Martini

    Topics:Fixed boundariesPeriodic boundary conditionsMinimum image distance

  11. Lecture 4: Temperature Control

    05 Jan 2010 | | Contributor(s):: Ashlie Martini

    Topics:Velocity scalingHeat bath/reservoirStochastic methods

  12. Lecture 3: Integration Algorithms

    05 Jan 2010 | | Contributor(s):: Ashlie Martini

    Topics:General guidelinesVerlet algorithmPredictor-corrector methods

  13. Lecture 2: Potential Energy Functions

    05 Jan 2010 | | Contributor(s):: Ashlie Martini

    Topics:Pair potentialsCoulomb interactionsEmbedded atom modelIntra-molecular interactions (bond, angle, torsion)

  14. Lecture 1: Basic Concepts

    13 Nov 2009 | | Contributor(s):: Ashlie Martini

    Topics:What is MDNewton’s lawBasic concepts and terminology

  15. Short Course on Molecular Dynamics Simulation

    11 Oct 2009 | | Contributor(s):: Ashlie Martini

    This set of ten presentations accompanied a graduate level course on Molecular Dynamics simulation. The specific objective of the course (and the presentations) is to provide: 1. Awareness of the opportunities and limitations of Molecular Dynamics as a tool for scientific and engineering...

  16. MIT Tools for Energy Conversion and Storage

    13 Sep 2009 | | Contributor(s):: Jeffrey C Grossman, Joo-Hyoung Lee, Varadharajan Srinivasan, Alexander S McLeod, Lucas Wagner

    Atomic-Scale Simulation Tools to Explore Energy Conversion and Storage Materials

  17. Energy and Nanoscience A More Perfect Union

    27 Mar 2009 | | Contributor(s):: Mark Ratner

    Huge problems of energy and sustainability confront the science/engineering community, mankind, and our planet. The energy problem comes in many dimensions, including supply, demand, conservation, transportation, and storage. This overview will stress the nature of these problems, and offer a few...

  18. Illinois Center for Cellular Mechanics: Discovery through the Computational Microscope

    09 Feb 2009 | | Contributor(s):: Klaus Schulten

    Computational MicroscopeAll-atom molecular dynamics simulations have become increasingly popular as a toolto investigate protein function and dynamics. However, researchers are usuallyconcerned about the short time scales covered by simulations, the apparentimpossibility to model large and...

  19. Illinois PHYS 466, Lecture 4: Molecular Dynamics

    05 Feb 2009 | | Contributor(s):: David M. Ceperley

    Molecular Dynamics What to choose in an integrator The Verlet algorithm Boundary Conditions in Space and time Reading assignment: Frenkel and Smit Chapter 4 Content: Characteristics of simulations The Verlet Algorithm Higher Order Methods? Quote from Berendsen Long-term stability of Verlet...

  20. Illinois MatSE485/Phys466/CSE485 - Atomic-Scale Simulation

    27 Jan 2009 | | Contributor(s):: David M. Ceperley

    THE OBJECTIVE is to learn and apply fundamental techniques used in (primarily classical) simulations in order to help understand and predict properties of microscopic systems in materials science, physics, chemistry, and biology. THE EMPHASIS will be on connections between the simulation...