Tags: Monte Carlo

Description

Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling to compute their results. Monte Carlo methods are often used in simulating physical and mathematical systems. Because of their reliance on repeated computation of random or pseudo-random numbers, these methods are most suited to calculation by a computer and tend to be used when it is unfeasible or impossible to compute an exact result with a deterministic algorithm.

Learn more about quantum dots from the many resources on this site, listed below. More information on Monte Carlo method can be found here.

Resources (21-40 of 101)

  1. Monte Carlo Simulation (Mark Asta)

    17 Jan 2017 |

  2. Memory-Efficient Particle Annihilation Algorithm for Wigner Monte Carlo Simulations

    10 Feb 2016 | | Contributor(s):: Paul Ellinghaus

    IWCE 2015 presentation. The Wigner Monte Carlo solver, using the signed-particle method, is based on the generation and annihilation of numerical particles. The memory demands of the annihilation algorithm can become exorbitant, if a high spatial resolution is used, because the entire discretized...

  3. Multilevel Markov Chain Monte Carlo for Uncertainty Quantification in Subsurface Flow

    04 Feb 2016 | | Contributor(s):: Christian Ketelsen

    The multilevel Monte Carlo method has been shown to be an effective variance reduction technique for quantifying uncertainty in subsurface flow simulations when the random conductivity field can be represented by a simple prior distribution. In state-of-the-art subsurface simulation the...

  4. High Dimensional Uncertainty Quantification via Multilevel Monte Carlo

    04 Feb 2016 | | Contributor(s):: Hillary Fairbanks

    Multilevel Monte Carlo (MLMC) has been shown to be a cost effective way to compute moments of desired quantities of interest in stochastic partial differential equations when the uncertainty in the data is high-dimensional. In this talk, we investigate the improved performance of MLMC versus...

  5. Study of the Interface Roughness Models using 3D Finite Element Schrödinger Equation Corrected Monte Carlo Simulator on Nanoscaled FinFET

    25 Jan 2016 | | Contributor(s):: Daniel Nagy, Muhammad Ali A. Elmessary, Manuel Aldegunde, Karol Kalna

    IWCE 2015 presentation.  Interface roughness scattering (IRS) is one of the key limiting scattering mechanism for both planar and non-planar CMOS devices. To predict the performance of future scaled devices and new structures the quantum mechanical confinement based IRS models are essential....

  6. Sensitivity Analysis of Multiscale Reaction Networks with Stochastic Averaging

    25 Jan 2016 | | Contributor(s):: Araz Ryan Hashemi

    We shall show how stochastic averaging may be employed to speed computations and obtain estimates of mean values and sensitivities with respect to the steady state distribution. Further, we shall establish bounds which show the bias induced by the averaging method decays to zero as the disparity...

  7. Anisotropic Schrödinger Equation Quantum Corrections for 3D Monte Carlo Simulations of Nanoscale Multigate Transistors

    05 Jan 2016 | | Contributor(s):: Karol Kalna, Muhammad Ali A. Elmessary, Daniel Nagy, Manuel Aldegunde

    IWCE 2015 presentation. We incorporated anisotropic 2D Schrodinger equation based quantum corrections (SEQC) that depends on valley orientation into a 3D Finite Element (FE) Monte Carlo (MC) simulation toolbox. The MC toolbox was tested against experimental ID-VG characteristics of the 22 nm gate...

  8. Atomistic Modeling: Past, Present, and Future, MGI, ICME, etc.

    03 Nov 2015 | | Contributor(s):: Paul Saxe

    I will present a perspective on atomistic modeling — tools using quantum methods such as DFT, as well as molecular dynamics and Monte Carlo methods based on forcefields — over the past 30 years or so. While we are all caught up in the present, it is important to remember and realize...

  9. Lecture 1: The Wigner Formulation of Quantum Mechanics

    18 Nov 2014 | | Contributor(s):: Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the Wigner formulation of Quantum Mechanics which is based on the concept of quasi-distributions defined over the phase-space.

  10. Lecture 2: The Wigner Monte Carlo Method for Single-Body Quantum Systems

    18 Nov 2014 | | Contributor(s):: Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the Wigner Monte Carlo method applied to single-body quantum systems.

  11. Lecture 3: The Wigner Monte Carlo Method for Density Functional Theory

    18 Nov 2014 | | Contributor(s):: Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the Wigner Monte Carlo method in the framework of density functional theory (DFT).

  12. Lecture 4: The ab-initio Wigner Monte Carlo Method

    18 Nov 2014 | | Contributor(s):: Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the ab-initio Wigner Monte Carlo method for the simulation of strongly correlated systems.

  13. Lecture 5: Systems of Identical Fermions in the Wigner Formulation of Quantum Mechanics

    18 Nov 2014 | | Contributor(s):: Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses about systems of indistinguishable Fermions in the Wigner formulation of quantum mechanics.

  14. Bulk Heterojunction Morphology Generator

    11 Feb 2013 | | Contributor(s):: Michael C. Heiber

    This tool creates nanoscale bulk heterojunction morphologies for use with organic photovoltaics simulations

  15. kinetic Monte Carlo Simulations (kMC)

    25 Mar 2014 | | Contributor(s):: Jingyuan Liang, R. Edwin Garcí­a, Ding-Wen Chung

    kMC is a set of scientific libraries designed to deploy kinetic Monte Carlo simulations (kMC). kMC allows the user to intuitively generate single component crystal lattices to simulate, post process, and visualize the kinetic Monte Carlo-based dynamics of materials.Philosophically, kMC was...

  16. Physics and Simulation of Nanoscale Electronic and Thermoelectric Devices

    25 Jun 2013 | | Contributor(s):: raseong kim

    For the past few decades, transistors have been continuously scaled. Dimensions are now at the nanoscale, and device performance has dramatically improved. Nanotechnology is also achieving breakthroughs in thermoelectrics, which have suffered from low efficiencies for decades. As the device scale...

  17. Device Physics Studies of III-V and Silicon MOSFETS for Digital Logic

    25 Jun 2013 | | Contributor(s):: Himadri Pal

    III-V's are currently gaining a lot of attraction as possible MOSFET channel materials due to their high intrinsic mobility. Several challenges, however, need to be overcome before III-V's can replace silicon (Si) in extremely scaled devices. The effect of low density-of-states of III-V materials...

  18. Carbon Nanotube Electronics: Modeling, Physics, and Applications

    27 Jun 2013 | | Contributor(s):: Jing Guo

    In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias transport can be nearly ballistic across distances of several hundred nanometers. Deposition of high-k gate...

  19. Physics and Simulation of Quasi-Ballistic Transport in Nanoscale Transistors

    27 Jun 2013 | | Contributor(s):: Jung-Hoon Rhew

    The formidable progress in microelectronics in the last decade has pushed thechannel length of MOSFETs into decanano scale and the speed of BJTs into hundreds of gigahertz. This progress imposes new challenges on device simulation as the essential physics of carrier transport departs that of...

  20. [Illinois] Molecular and Multiscale Simulation Summer School

    08 May 2013 | | Contributor(s):: NanoBio Node

    This Summer School will train students in molecular simulation and simulation at multiple time and length scales. Instruction will be provided on quantum Monte Carlo simulation, molecular dynamics, coarse-grained simulations, and multiscale simulations with opportunities for hands-on experience...