
Test for Monte Carlo Learning Module
30 Jul 2011  Teaching Materials  Contributor(s): Dragica Vasileska, Gerhard Klimeck
this is a test for the MC Learning Module.
https://nanohub.org/resources/11767

Single Particle and Ensemble Monte Carlo Method
30 Jun 2011  Teaching Materials  Contributor(s): Dragica Vasileska
This set of handwritten notes is part of the Semiconductor Transport class.
https://nanohub.org/resources/11558

Manual for the Generalized Bulk Monte Carlo Tool
24 Jun 2011  Teaching Materials  Contributor(s): Raghuraj Hathwar, Dragica Vasileska
This manual describes the physics implemented behind the generalized bulk Monte Carlo tool.
https://nanohub.org/resources/11474

Generalized Monte Carlo Presentation
20 Jun 2011  Teaching Materials  Contributor(s): Dragica Vasileska
This presentation goes along with the Bulk Monte Carlo tool on the nanoHUB that calculates transients and steadystate velocityfield characteristics of arbitrary materials such as Si, Ge, GaAs,...
https://nanohub.org/resources/11425

High Field Transport and the Monte Carlo Method for the Solution of the Boltzmann Transport Equation
23 Jul 2010  Teaching Materials  Contributor(s): Dragica Vasileska
This set of slides first describes the pathintegral solution of the BTE and then discusses in details the Monte Carlo Method for the Solution of the Boltzmann Transport Equation.
https://nanohub.org/resources/9403

Atomistic Simulations of Reliability
06 Jul 2010  Teaching Materials  Contributor(s): Dragica Vasileska
Discrete impurity effects in terms of their statistical variations in number and position in the inversion and depletion region of a MOSFET, as the gate length is aggressively scaled, have...
https://nanohub.org/resources/9253

Bulk Monte Carlo: Implementation Details and Source Codes Download
01 Jun 2010  Teaching Materials  Contributor(s): Dragica Vasileska, Stephen M. Goodnick
The Ensemble Monte Carlo technique has been used now for over 30 years as a numerical method to simulate nonequilibrium transport in semiconductor materials and devices, and has been the subject...
https://nanohub.org/resources/9109

From SemiClassical to Quantum Transport Modeling: ParticleBased Device Simulations
10 Aug 2009  Teaching Materials  Contributor(s): Dragica Vasileska
This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantummechanically. An indepth description is...
https://nanohub.org/resources/7214

Band Structure Lab: FirstTime User Guide
15 Jun 2009  Teaching Materials  Contributor(s): Abhijeet Paul, Benjamin P Haley, Gerhard Klimeck
This document provides useful information about Band Structure Lab. Firsttime users will find basic ideas about the physics behind the tool such as band formation, the Hamiltonian description,...
https://nanohub.org/resources/6935

Homework Assignment for Bulk Monte Carlo Lab: Velocity vs. Field for Arbitrary Crystallographic Orientations
22 Aug 2008  Teaching Materials  Contributor(s): Dragica Vasileska, Gerhard Klimeck
User needs to calculate and compare to experiment the velocity field characteristics for electrons in Si for different crystalographic directions and 77K and 300K temperatures.
https://nanohub.org/resources/5321

Homework Assignment for Bulk Monte Carlo Lab: Arbitrary Crystallographic Direction
21 Aug 2008  Teaching Materials  Contributor(s): Dragica Vasileska, Gerhard Klimeck
This exercise teaches the users how the average carrier velocity, average carrier energy and vally occupation change with the application of the electric field in arbitrary crystalographic direction
https://nanohub.org/resources/5275

Bulk Monte Carlo Code Described
02 Jul 2008  Teaching Materials  Contributor(s): Dragica Vasileska
In this tutorial we give implementation details for the bulk Monte Carlo code for calculating the electron drift velocity, velocityfield characteristics and average carrier energy in bulk GaAs...
https://nanohub.org/resources/4843

Computational Nanoscience, Lecture 20: Quantum Monte Carlo, part I
20 May 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
This lecture provides and introduction to Quantum Monte Carlo methods. We review the concept of electron correlation and introduce Variational Monte Carlo methods as an approach to going beyond...
https://nanohub.org/resources/4564

Computational Nanoscience, Lecture 21: Quantum Monte Carlo, part II
20 May 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
This is our second lecture in a series on Quantum Monte Carlo methods. We describe the Diffusion Monte Carlo approach here, in which the approximation to the solution is not restricted by choice...
https://nanohub.org/resources/4566

Computational Nanoscience, Lecture 27: Simulating Water and Examples in Computational Biology
20 May 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
In this lecture, we describe the challenges in simulating water and introduce both explicit and implicit approaches. We also briefly describe protein structure, the Levinthal paradox, and...
https://nanohub.org/resources/4576

Computational Nanoscience, Homework Assignment 4: HardSphere Monte Carlo and Ising Model
05 Mar 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
In this assignment, you will explore the use of Monte Carlo techniques to look at (1) hardsphere systems and (2) Ising model of the ferromagneticparamagnetic phase transition in twodimensions. ...
https://nanohub.org/resources/4134

Computational Nanoscience, Lecture 10: Brief Review, Kinetic Monte Carlo, and Random Numbers
05 Mar 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
We conclude our discussion of Monte Carlo methods with a brief review of the concepts covered in the three previous lectures. Then, the Kinetic Monte Carlo method is introduced, including...
https://nanohub.org/resources/4090

Computational Nanoscience, Lecture 9: HardSphere Monte Carlo InClass Simulation
20 Feb 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
In this lecture we carry out simulations inclass, with guidance from the instructors. We use the HSMC tool (within the nanoHUB simulation toolkit for this course). The hard sphere system is one...
https://nanohub.org/resources/4067

Computational Nanoscience, Lecture 7: Monte Carlo Simulation Part I
15 Feb 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
The purpose of this lecture is to introduce Monte Carlo methods as a form of stochastic simulation. Some introductory examples of Monte Carlo methods are given, and a basic introduction to...
https://nanohub.org/resources/4044

Computational Nanoscience, Lecture 8: Monte Carlo Simulation Part II
15 Feb 2008  Teaching Materials  Contributor(s): Elif Ertekin, Jeffrey C Grossman
In this lecture, we continue our discussion of Monte Carlo simulation. Examples from Hard Sphere Monte Carlo simulations based on the Metropolis algorithm and from Grand Canonical Monte Carlo...
https://nanohub.org/resources/4056