
Illinois ECE 440 Solid State Electronic Devices, Lecture 35: Short Channel MOSFET and NonIdeal Behavior
02 Mar 2010   Contributor(s):: Eric Pop
…

Illinois ECE 440 Solid State Electronic Devices, Lecture 36: MOSFET Scaling Limits
02 Mar 2010   Contributor(s):: Eric Pop
…

Illinois ECE 440 Solid State Electronic Devices, Lecture 37: MOSFET Analog Amplifier and Digital Inverter
02 Mar 2010   Contributor(s):: Eric Pop
…

Illinois ECE 440: MOS FieldEffect Transistor Homework
28 Jan 2010   Contributor(s):: Mohamed Mohamed
This homework covers Output Characteristics and Mobility Model of MOSFETs.

Illinois Tools: MOCA
28 Mar 2007   Contributor(s):: Mohamed Mohamed, Umberto Ravaioli, Nahil Sobh, derrick kearney, Kyeonghyun Park
2D Fullband Monte Carlo (MOCA) Simulation for SOIBased Device Structures

Introduction to nanoMOS
02 Jul 2007   Contributor(s):: James K Fodor, Jing Guo
This learning module introduces nanoHUB users to the nanoMOS simulator. A brief introduction to nanoMOS is presented, followed by voiced presentations featuring the simulator in action. Upon completion of this module, users should be able to use this simulator to gain valuable insight into the...

Introduction: Physics of Nanoscale MOSFETs
26 Aug 2008   Contributor(s):: Mark Lundstrom

Introductory Comments
29 Sep 2008   Contributor(s):: Muhammad A. Alam

Ivan C R nascimento
https://nanohub.org/members/121504

kumar rohit
https://nanohub.org/members/62042

Lecture 1: Review of MOSFET Fundamentals
26 Aug 2008   Contributor(s):: Mark Lundstrom
A quick review of the traditional theory of the MOSFET along with a review of key device performance metrics. A short discussion of the limits of the traditional (driftdiffusion) approach and the meaning of ballistic transport is also included.

Lecture 1b: Nanotransistors  A Bottom Up View
20 Jul 2010   Contributor(s):: Mark Lundstrom
MOSFET scaling continues to take transistors to smaller and smaller dimensions. Today, the MOSFET is a true nanoelectronic device – one of enormous importance for computing, data storage, and for communications. In this lecture, I will present a simple, physical model for the nanoscale MOSFET...

Lecture 2: Elementary Theory of the Nanoscale MOSFET
08 Sep 2008   Contributor(s):: Mark Lundstrom
A very simple (actually overly simple) treatment of the nanoscale MOSFET. This lecture conveys the essence of the approach using only simple mathematics. It sets the stage for the subsequent lectures.

Lecture 3A: The Ballistic MOSFET
10 Sep 2008   Contributor(s):: Mark Lundstrom
The IV characteristic of the ballistic MOSFET is formally derived. When Boltzmann statistics are assumed, the model developed here reduces to the one presented in Lecture 2. There is no new physics in this lecture  just a proper mathematical derivation of the approach that was developed...

Lecture 3B: The Ballistic MOSFET
10 Sep 2008   Contributor(s):: Mark Lundstrom
This lecture is a continuation of part 3A. After discussion some bandstructure considerations, it describes how 2D and subthreshold electrostatics are included in the ballistic model.

Lecture 4: Scattering in Nanoscale MOSFETs
08 Sep 2008   Contributor(s):: Mark Lundstrom
No MOSFET is ever fully ballistic  there is always some carrier scattering. Scattering makes the problem complicated and requires detailed numerical simulations to treat properly. My objective in this lecture is to present a simple, physical picture that describes the essence of the problem and...

Lecture 5: Application to StateoftheArt FETs
08 Sep 2008   Contributor(s):: Mark Lundstrom
The previous lessons may seem a bit abstract and mathematical. To see how this all works, we examine measured data and show how the theory presented in the previous lessons help us understand the operation of modern FETs.

Lecture 7: Connection to the Bottom Up Approach
23 Sep 2008   Contributor(s):: Mark Lundstrom
While the previous lectures have been in the spirit of the bottom up approach, they did not follow the generic device model of Datta. In this lecture, the ballistic MOSFET theory will be formally derived from the generic model for a nanodevice to show the connection explicitly.

madFETs
madFET introduction
The FieldEffectTransistor has been proposed and implement in many physical systems, materials, and geometries. A multitude of acronyms have developed around these...
https://nanohub.org/wiki/madFETs

MATLAB: Negative Capacitance (NC) FET Model
05 Dec 2015   Contributor(s):: Muhammad Abdul Wahab, Muhammad A. Alam
MATLAB model that calculates the QV, CV, and IV characteristics of the conventional MOSFET and NCFET.