Tags: nano electro-mechanical systems

Description

Nano Electro-Mechanical Systems (NEMS) are tiny machines built at the nanometer scale. Current NEMS applications are simple machines, such as the tiny cantilever shown at the right. An electrical circuit measures the deflection of the lever. A larger version of this device, with dimensions at the micrometer or millimeter scale, is commonly used as an airbag sensor in automobiles. A sudden stop causes a strong deflection of the lever, which signals that the airbags should be deployed. At the nano scale, such a lever is sensitive enough to measure the weight of individual atoms or molecules resting upon it.

Learn more about NEMS from the resources available on this site, listed below.

Online Presentations (21-40 of 82)

  1. Selective Silicon Epitaxy Seen at the Nanometer Scale

    14 Jun 2007 | | Contributor(s):: Matthew Mark Sztelle

    The presenter introduces NEMS (nanoelectromechanical systems) and STM (Scanning Tunneling Microscopy and continues to present material on Selective Silicon Epitaxy seen at the Nanometer ScaleMatthew M. Sztelle is a Research Assistant in the Scanning Tunneling Microscopy Group at the Beckman...

  2. Piezoelectric Transducers: Strain Sensing and Energy Harvesting (and Frequency Tuning)

    15 Jun 2007 | | Contributor(s):: Toshikazu Nishida

    Acoustic pressure or mechanical force sensing via piezoelectric coupling is closely related to the harvesting of electrical energy from acoustical and mechanical energy sources. In this talk, mesoscale and microscale piezoelectric transducers for acoustic and vibrational sensing and energy...

  3. SUGAR: the SPICE for MEMS

    21 May 2007 | | Contributor(s):: Jason Clark

    In this seminar, I present some design, modeling, and simulation features of a computer aided engineering tool for microelectromechanical systems (MEMS) called SUGAR. For experimental verification, I use a microdevice that is difficult to simulate with conventional MEMS software. I show that the...

  4. Electron Emission from Nanoscale Carbon Materials

    15 May 2007 | | Contributor(s):: Timothy S Fisher

    Prior studies on electron emission show possibly beneficial effects ofnanoscale phenomena on energy-conversion characteristics. For example,recent work has shown that the electric field around a nanoscale fieldemission device can increase the average energy of emitted electrons. Weconsider here...

  5. BNC Annual Research Symposium: Bio-Nanotechnology and Biomedical Devices

    23 Apr 2007 | | Contributor(s):: Rashid Bashir

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.

  6. BNC Annual Research Symposium: Nanoscale Energy Conversion

    23 Apr 2007 | | Contributor(s):: Timothy S Fisher

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.

  7. Atomistic Modeling of the Mechanical Properties of Nanostructured Materials

    16 Apr 2007 | | Contributor(s):: SeongJun Heo, Susan Sinnott

    The mechanical properties of carbon nanotubes are studied by using classical molecular dynamics simulations. Especially, the effects of filling, temperature, and functionalization on CNT's tensional and twisting properties are considered in this study.

  8. Orientational Dependence of Friction in Polyethylene

    16 Apr 2007 | | Contributor(s):: SeongJun Heo

    The frictional properties of polyethylene polymer are investigated by using classical molecular dynamics simulations. Especially, the sliding orientational effect is considered in this study. The results of polyethylene are also compared to those of polytetrafluoroethylene(PTFE).

  9. High-Aspect-Ratio Micromachining of Titanium: Enabling New Functionality and Opportunity in Micromechanical Systems Through Greater Materials Selection

    09 Apr 2007 | | Contributor(s):: Masa Rao

    Traditionally, materials selection has been limited in high-aspect-ratio micromechanical applications, due primarily to the predominance of microfabrication processes and infrastructure dedicated to silicon. While silicon has proven to be an excellent material for many of these applications, no...

  10. Fouling Mechanisms in Y-shaped Carbon Nanotubes

    04 Apr 2007 | | Contributor(s):: Jason, SeongJun Heo, Susan Sinnott

    In the modern pharmaceutical and chemical industries, solutions of extremely high purity are needed. Current filtration methods are reaching the limits of their abilities, so new filters must be developed. One possible filter is a Y-shaped carbon nanotube (Y-tube). By changing the sizes of the...

  11. MSE 376 Lecture 19: Nanoelectromechanical Systems, part 2

    31 Mar 2007 |

  12. MSE 376 Lecture 18: Nanoelectromechanical Systems, part 1

    31 Mar 2007 |

  13. Highly Efficient Thermal Transport: The Application of Carbon Nanotube Array Interfaces

    01 Feb 2007 | | Contributor(s):: Baratunde A. Cola

    Carbon nanotubes (CNTs) have received much attention in recent years for their extraordinary properties that through careful engineering may be leverage for the development of numerous advantageous applications. However, to date, only few CNT based applications exist in the market place. So when...

  14. RF MEMS: Passive Components and Architectures

    02 Jan 2007 | | Contributor(s):: Dimitrios Peroulis

    This seminar is an introduction to the MEMS technology as itapplies to RF and Microwave systems. Besides discussing several key RFMEMS components (switches, varactors, inductors), reconfigurable circuitarchitectures will also be introduced. In addition, reliability and costconsiderations as...

  15. Nanoscale Thermodynamics

    13 Dec 2006 | | Contributor(s):: John Enriquez

    This is the fifth contribution from the students in the University of Texas at El Paso Molecular Electronics course given in the fall of 2006.This introduces nanothermodynamics, the study of small system equilibrium. Nanothermodynamics was established in the early 60’s, but has recently been...

  16. Understanding Phonon Dynamics via 1D Atomic Chains

    04 Apr 2006 | | Contributor(s):: Timothy S Fisher

    Phonons are the principal carriers of thermal energy in semiconductors and insulators, and they serve a vital role in dissipating heat produced by scattered electrons in semiconductor devices. Despite the importance of phonons, rigorous understanding and inclusion of phonon dynamics in...

  17. Chemical Modification of GaAs with TAT Peptide and Alkylthiol Self-Assembled Monolayers

    03 Aug 2006 | | Contributor(s):: Hamsa Jaganathan

    The use of self-assembled monolayers (SAM) on semiconductors creates a basis for the design and creation of bioelectronics, such as biosensors. The interface between the surface and an organic monolayer can change significant electrical and physiochemical properties of a biological device....

  18. Nanotubes and Nanowires: One-dimensional Materials

    17 Jul 2006 |

    What is a nanowire? What is a nanotube? Why are they interesting and what are their potential applications? How are they made? This presentation is intended to begin to answer these questions while introducing some fundamental concepts such as wave-particle duality, quantum confinement, the...

  19. What is "Nanofluidics"? or The Nano-izing of Fluid Mechanics

    28 Jun 2006 | | Contributor(s):: Steve Wereley

    Micro- and nanoscaled fluid mechanics are rapidly emerging as important supporting fields in biomedical technology, nanotechnology, etc., as well as being important fields of study in their own right. Despite the common use of these terms in the literature, the fluid behavior at these small...

  20. Molecular Dynamics Simulations with the Second-Generation Reactive Empirical Bond Order (REBO) Potential

    02 Apr 2006 | | Contributor(s):: Wen-Dung Hsu, Susan Sinnott

    In this presentation, the molecular dynamics (MD) simulation will be introduced first. The applications of MD simulation, the procedure of MD simulation and some speed-up methods in MD simulation will be talked. Then the bond order potentials which are capable to predict bond breaking and new...