Support

Support Options

Submit a Support Ticket

 

Tags: nanoelectronics

Description

Progress in technology has brought microelectronics to the nanoscale, but nanoelectronics is not yet a well-defined engineering discipline with a coherent, experimentally verified, theoretical framework. The NCN has a vision for a new, 'bottom-up' approach to electronics, which involves: understanding electronic conduction at the atomistic level; formulating new simulation techniques; developing a new generation of software tools; and bringing this new understanding and perspective into the classroom. We address problems in atomistic phenomena, quantum transport, percolative transport in inhomogeneous media, reliability, and the connection of nanoelectronics to new problems such as biology, medicine, and energy. We work closely with experimentalists to understand nanoscale phenomena and to explore new device concepts. In the course of this work, we produce open source software tools and educational resources that we share with the community through the nanoHUB.

This page is a starting point for nanoHUB users interested in nanoelectronics. It lists key resources developed by the NCN Nanoelectronics team. The nanoHUB contains many more resources for nanoelectronics, and they can be located with the nanoHUB search function. To find all nanoelectronics resources, search for 'nanoelectronics.' To find those contributed by the NCN nanoelectronics team, search for 'NCNnanoelectronics.' More information on Nanoelectronics can be found here.

Resources (21-40 of 1753)

  1. Magnetic Tunnel Junction Lab

    23 Sep 2013 | Tools | Contributor(s): Samiran Ganguly, Deepanjan Datta, Chen Shang, Sankarsh Ramadas, Sayeef Salahuddin, Supriyo Datta

    Calculate Resistance, Tunneling Magneto Resistance, Spin Torques, and Switching characteristics of a Magnetic Tunnel Junction

    https://nanohub.org/resources/mtjlab

  2. NanoPlasticity Lab

    02 Aug 2013 | Tools | Contributor(s): Martin Hunt, Lei Cao, Alejandro Strachan, Marisol Koslowski

    A phase field approach to plastic deformation in nano crystalline materials

    https://nanohub.org/resources/nanoplasticity

  3. Efficiency Enhancement for Nanoelectronic Transport Simulations

    02 Feb 2014 | Papers | Contributor(s): Jun Huang

    PhD thesis of Jun Huang Continual technology innovations make it possible to fabricate electronic devices on the order of 10nm. In this nanoscale regime, quantum physics becomes critically...

    https://nanohub.org/resources/20248

  4. ECE 612 Lecture 9: Subthreshold Conduction

    25 Jan 2014 | Online Presentations | Contributor(s): Mark Lundstrom

    Please view ECE 612 Lecture 12: Subthreshold Conduction from the 2006 teaching.

    https://nanohub.org/resources/5617

  5. ECE 612 Lecture 10: Threshold Voltage and MOSFET Capacitances

    25 Jan 2014 | Online Presentations | Contributor(s): Mark Lundstrom

    Please view ECE 612 Lecture 13: Threshold Voltage and MOSFET Capacitances from the 2006 teaching.

    https://nanohub.org/resources/5618

  6. Uniaxial and Biaxial Stress Strain Calculator for Semiconductors

    16 Jan 2014 | Tools | Contributor(s): Jamie Teherani

    Simulate stress or strain along user-defined Miller directions for arbitrary stress/strain configurations.

    https://nanohub.org/resources/straincalc

  7. Linearized Boltzmann transport calculator for thermoelectric materials

    11 Jul 2013 | Tools | Contributor(s): Je-Hyeong Bahk, Robert Benjamin Post, Kevin Margatan, Zhixi Bian, Ali Shakouri

    Simulation tool to calculate thermoelectric transport properties of bulk materials based on their multiple nonparabolic band structure information using the linearized Boltzmann transport equation

    https://nanohub.org/resources/btesolver

  8. Model and Algorithm Prototyping Platform

    29 Sep 2013 | Tools | Contributor(s): Jaijeet Roychowdhury, Tianshi Wang

    Model and Algorithm Prototyping Platform

    https://nanohub.org/resources/mde

  9. Thermoelectric Power Generator System Optimization and Cost Analysis

    26 Sep 2013 | Tools | Contributor(s): Kaz Yazawa, Kevin Margatan, Je-Hyeong Bahk, Ali Shakouri

    Simulate cost and efficiency trade-off of a thermoelectric device as a function of material properties and heat transfer coefficients

    https://nanohub.org/resources/tedev

  10. LanTraP

    17 Sep 2013 | Tools | Contributor(s): Kyle Conrad, Jesse Maassen, Mark Lundstrom

    This tool calculates the distribution of modes, the electronic thermoelectric transport coefficients, and the lattice thermal transport properties from band structure information.

    https://nanohub.org/resources/lantrap

  11. Intro to MOS-Capacitor Tool

    09 Jan 2013 | Tools | Contributor(s): Emmanuel Jose Ochoa, Stella Quinones

    Understanding the effect of silicon doping, oxide (SiO2) thickness, gate type (n+poly/p+poly), and semiconductor type (n-type/p-type) on the flatband voltage, threshold voltage, surface potential...

    https://nanohub.org/resources/mosctool

  12. Tunnel FETs - Device Physics and Realizations

    10 Jul 2013 | Online Presentations | Contributor(s): Joachim Knoch

    Here, the operating principles of TFETs will be discussed in detail and experimental realizations as well as simulation results will be presented. In particular, the role of the injecting source...

    https://nanohub.org/resources/18723

  13. The Road Ahead for Carbon Nanotube Transistors

    09 Jul 2013 | Online Presentations | Contributor(s): Aaron Franklin

    In this talk, recent advancements in the nanotube transistor field will be reviewed, showing why CNTFETs are worth considering now more than ever. Then, the material- and device-related challenges...

    https://nanohub.org/resources/18867

  14. Thin-Film and Multi-Element Thermoelectric Devices Simulator

    17 Jul 2012 | Tools | Contributor(s): Je-Hyeong Bahk, Megan Youngs, Zach Schaffter, Kazuaki Yazawa, Ali Shakouri

    Tool to simulate both micro-scale thin-film thermoelectric devices and large-scale multi-element thermoelectric modules for cooling and power generation

    https://nanohub.org/resources/thermo

  15. Physics and Simulation of Nanoscale Electronic and Thermoelectric Devices

    28 Jun 2013 | Papers | Contributor(s): raseong kim

    For the past few decades, transistors have been continuously scaled. Dimensions are now at the nanoscale, and device performance has dramatically improved. Nanotechnology is also achieving...

    https://nanohub.org/resources/18690

  16. III-V Nanoscale MOSFETS: Physics, Modeling, and Design

    28 Jun 2013 | Papers | Contributor(s): Yang Liu

    As predicted by the International Roadmap for Semiconductors (ITRS), power consumption has been the bottleneck for future silicon CMOS technology scaling. To circumvent this limit, researchers are...

    https://nanohub.org/resources/18694

  17. Device Physics Studies of III-V and Silicon MOSFETS for Digital Logic

    28 Jun 2013 | Papers | Contributor(s): Himadri Pal

    III-V's are currently gaining a lot of attraction as possible MOSFET channel materials due to their high intrinsic mobility. Several challenges, however, need to be overcome before III-V's can...

    https://nanohub.org/resources/18697

  18. Quantum and Atomistic Effects in Nanoelectronic Transport Devices

    28 Jun 2013 | Papers | Contributor(s): Neophytos Neophytou

    As devices scale towards atomistic sizes, researches in silicon electronic device technology are investigating alternative structures and materials. As predicted by the International Roadmap for...

    https://nanohub.org/resources/18705

  19. Inelastic Transport in Carbon Nanotube Electronic and Optoelectronic Devices

    28 Jun 2013 | Papers | Contributor(s): Siyu Koswatta

    Discovered in the early 1990's, carbon nanotubes (CNTs) are found to have exceptional physical characteristics compared to conventional semiconductor materials, with much potential for devices...

    https://nanohub.org/resources/18707

  20. Electron Phonon Interaction in Carbon Nanotube Devices

    28 Jun 2013 | Papers | Contributor(s): Sayed Hasan

    With the end of silicon technology scaling in sight, there has been a lot of interest in alternate novel channel materials and device geometry. Carbon nanotubes, the ultimate one-dimensional (1D)...

    https://nanohub.org/resources/18733

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.