
NanoScale Device Simulations Using PROPHET
20 Jan 2006   Contributor(s):: yang liu,
These two lectures are aimed to give a practical guide to the use of ageneral device simulator (PROPHET) available on nanoHUB. PROPHETis a partial differential equation (PDE) solver that offers usersthe flexibility of integrating new models and equations for theirnanodevice simulations. The...

Optimization of Transistor Design for Carbon Nanotubes
20 Jan 2006   Contributor(s):: Jing Guo
We have developed a selfconsistent atomistic simulator for CNTFETs.Using the simulator, we show that a recently reported highperformanceCNTFET delivers a near ballistic oncurrent. The offstate, however, issignificantly degraded because the CNTFET operates like anonconventional Schottky...

Padre
12 Jan 2006   Contributor(s):: Mark R. Pinto, kent smith, Muhammad A. Alam, Steven Clark, Xufeng Wang, Gerhard Klimeck, Dragica Vasileska
2D/3D devices under steady state, transient conditions or AC smallsignal analysis

Quantum Corrections for Monte Carlo Simulation
05 Jan 2006   Contributor(s):: Umberto Ravaioli
Size quantization is an important effect in modern scaled devices. Due to the cost and limitations of available full quantum approaches, it is appealing to extend semiclassical simulators by adding corrections for size quantization. Monte Carlo particle simulators are good candidates, because a...

Exercises for FETToy
11 Oct 2005   Contributor(s):: Mark Lundstrom
This series of exercises uses the FETToy program to illustrate some of the key physical concepts for nanotransistors.

Ballistic Nanotransistors  Learning Module
07 Dec 2005   Contributor(s):: Mark Lundstrom
This resource is an introduction to the theory ballistic nanotransistors. No transistor is fully ballistic, but analyzing nanotransistors by neglecting scattering processes provides new insights into the performance and limits of nanoscale MOSFETs. The materials presented below introduces the...

Notes on the Ballistic MOSFET
08 Oct 2005   Contributor(s):: Mark Lundstrom
When analyzing semiconductor devices, the traditional approach is to assume that carriers scatter frequently from ionized impurities, phonons, surface roughness, etc. so that the average distance between scattering events (the socalled meanfreepath, λ) is much shorter than the device. When...

How Semiconductors and Transistors Work
20 Nov 2005 
This animation shows how semiconductor crystals work and how they are used to make transistor switches.

Bandstructure in Nanoelectronics
01 Nov 2005   Contributor(s):: Gerhard Klimeck
This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material needs to be included in the device modeling. Atomistic bandstructure effects in resonant tunneling...

FETToy 2.0 Source Code Download
09 Mar 2005 
FETToy 2.0 is a set of Matlab scripts that calculate the ballistic IV characteristics for a conventional MOSFETs, Nanowire MOSFETs and Carbon NanoTube MOSFETs. For conventional MOSFETs, FETToy assumes either a single or double gate geometry and for a nanowire and nanotube MOSFETs it assumes a...

An Electrical Engineering Perspective on Molecular Electronics
26 Oct 2005   Contributor(s):: Mark Lundstrom
After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths that are less than 50 nm long, and billion transistor logic chips have arrived. Moore's Law continues, but the end of...

Simple Theory of the Ballistic MOSFET
11 Oct 2005   Contributor(s):: Mark Lundstrom
Silicon nanoelectronics has become silicon nanoelectronics, but we still analyze, design, and think about MOSFETs in more or less in the same way that we did 30 years ago. In this talk, I will describe a simple analysis of the ballistic MOSFET. No MOSFET is truly ballistic, but approaching this...

Semiconductor Interfaces at the Nanoscale
17 Oct 2005   Contributor(s):: David Janes
The trend in downscaling of electronic devices and the need to add functionalities such as sensing and nonvolatile memory to existing circuitry dictate that new approaches be developed for device structures and fabrication technologies. Various device technologies are being investigated,...

Plasmonic Nanophotonics: Coupling Light to Nanostructure via Plasmons
03 Oct 2005   Contributor(s):: Vladimir M. Shalaev
The photon is the ultimate unit of information because it packages data in a signal of zero mass and has unmatched speed. The power of light is driving the photonicrevolution, and information technologies, which were formerly entirely electronic, are increasingly enlisting light to communicate...

On the Reliability of MicroElectronic Devices: An Introductory Lecture on Negative Bias Temperature Instability
28 Sep 2005   Contributor(s):: Muhammad A. Alam
In 1930s Bell Labs scientists chose to focus on Siand Ge, rather than better known semiconductors like Ag2S and Cu2S, mostly because of their reliable performance. Their choice was rewarded with the invention of bipolar transistors several years later. In 1960s, scientists at Fairchild worked...

Modeling and Simulation of SubMicron Thermal Transport
26 Sep 2005   Contributor(s):: Jayathi Murthy
In recent years, there has been increasing interest in understanding thermal phenomena at the submicron scale. Applications include the thermal performance of microelectronic devices, thermoelectric energy conversion, ultrafast laser machining and many others. It is now accepted that...

Moore's Law Forever?
13 Jul 2005   Contributor(s):: Mark Lundstrom
This talk covers the big technological changes in the 20th and 21st century that were correctly predicted by Gordon Moore in 1965. Moore's Law states that the number of transistors on a silicon chip doubles every technology generation. In 1960s terms that meant every 12 months and currently this...

Nanoelectronics: The New Frontier?
18 Apr 2005   Contributor(s):: Mark Lundstrom
After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths of only 50 nm, and billion transistor logic chips have arrived. Moore’s Law continues, but the end of MOSFET scaling is...

2005 Molecular Conduction and Sensors Workshop
27 Jul 2005 
This is the 3rd in a series of annual workshops on Molecular Conduction. The prior workshops have been at Purdue University, W. Lafayette, IN (2003) and Nothwestern University, Evanston, IL (2004). The workshop has been an informal and open venue for discussing new results, key challenges, and...

CMOS Nanotechnology
07 Jul 2004   Contributor(s):: Mark Lundstrom
In nonspecialist language, this talk introduces CMOS technology used for modern electronics. Beginning with an explanation of "CMOS," the speaker relates basic system considerations of transistor design and identifies future challenges for CMOS electronics. Anyone with an elementary...