Tags: nanotransistors


A nanotransistor is a transistor whose dimensions are measured in nanometers. Transistors are used for switching and amplifying electronic signals. When combined in the millions and billions, they can be used to create sophisticated programmable information processors.

All Categories (401-420 of 423)

  1. On the Reliability of Micro-Electronic Devices: An Introductory Lecture on Negative Bias Temperature Instability

    03 Oct 2005 | Online Presentations | Contributor(s): Muhammad A. Alam

    In 1930s Bell Labs scientists chose to focus on Siand Ge, rather than better known semiconductors like Ag2S and Cu2S, mostly because of their reliable performance. Their choice was rewarded with...


  2. Modeling and Simulation of Sub-Micron Thermal Transport

    27 Sep 2005 | Online Presentations | Contributor(s): Jayathi Murthy

    In recent years, there has been increasing interest in understanding thermal phenomena at the sub-micron scale. Applications include the thermal performance of microelectronic devices,...


  3. Moore's Law Forever?

    10 Aug 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    This talk covers the big technological changes in the 20th and 21st century that were correctly predicted by Gordon Moore in 1965. Moore's Law states that the number of transistors on a silicon...


  4. Nanoelectronics: The New Frontier?

    26 May 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths of only 50 nm, and...


  5. 2005 Molecular Conduction and Sensors Workshop

    25 May 2005 | Workshops

    This is the 3rd in a series of annual workshops on Molecular Conduction. The prior workshops have been at Purdue University, W. Lafayette, IN (2003) and Nothwestern University, Evanston, IL...


  6. CMOS Nanotechnology

    25 May 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    In non-specialist language, this talk introduces CMOS technology used for modern electronics. Beginning with an explanation of "CMOS," the speaker relates basic system considerations of transistor...


  7. Transistors

    25 May 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    The transistor is the basic element of electronic systems. The integrated circuits inside today's personal computers, cell phones, PDA's, etc., contain hundreds of millions of transistors on a...


  8. Prophet

    15 May 2005 | Tools | Contributor(s): Connor S. Rafferty, kent smith, Yang Liu, Derrick Kearney, Steven Clark

    Framework for solving systems of partial differential equations (PDEs) in time and 1, 2, or 3 space dimensions


  9. MATLAB Scripts for "Quantum Transport: Atom to Transistor"

    15 Mar 2005 | Downloads | Contributor(s): Supriyo Datta

    Tinker with quantum transport models! Download the MATLAB scripts used to demonstrate the physics described in Supriyo Datta's book Quantum Transport: Atom to Transistor. These simple models are...


  10. Self-Heating and Scaling of Silicon Nano-Transistors

    07 Mar 2005 | Online Presentations | Contributor(s): Eric Pop

    The most often cited technological roadblock of nanoscale electronics is the "power problem," i.e. power densities and device temperatures reaching levels that will prevent their reliable...


  11. NanoMOS 2.5 Source Code Download

    22 Feb 2005 | Downloads | Contributor(s): Zhibin Ren, Sebastien Goasguen

    NanoMOS is a 2-D simulator for thin body (less than 5 nm), fully depleted, double-gated n-MOSFETs. A choice of five transport models is available (drift-diffusion, classical ballistic, energy...


  12. Curriculum on Nanotechnology

    27 Jan 2005 | Courses

    To exploit the opportunities that nanoscience is giving us, engineers will need to learn how to think about materials, devices, circuits, and systems in new ways. The NCN seeks to bring the new...


  13. Exponential Challenges, Exponential Rewards - The Future of Moore's Law

    14 Dec 2004 | Online Presentations | Contributor(s): Shekhar Borkar

    Three exponentials have been the foundation of today's electronics, which are often taken for granted—namely transistor density, performance, and energy. Moore's Law captures the impact of...


  14. Electronic Transport in Semiconductors (Introductory Lecture)

    26 Aug 2004 | Online Presentations | Contributor(s): Mark Lundstrom

    Welcome to the ECE 656 Introductory lecture. The objective of the course is to develop a clear, physical understanding of charge carrier transport in bulk semiconductors and in small semiconductor...


  15. Faster Materials versus Nanoscaled Si and SiGe: A Fork in the Roadmap?

    22 Jul 2004 | Online Presentations | Contributor(s): Jerry M. Woodall

    Strained Si and SiGe MOSFET technologies face fundamental limits towards the end of this decade when the technology roadmap calls for gate dimensions of 45 nm headed for 22 nm. This fact, and...


  16. SURI 2003 Conference

    21 Apr 2004 | Workshops

    2003 SURI Conference Proceedings


  17. A Personal Quest for Information

    13 Apr 2004 | Online Presentations | Contributor(s): Vwani P. Roychowdhury

    This talk will report results and conclusions from my personal investigations into several different disciplines, carried out with the unifying intent of uncovering some of the fundamental...


  18. Digital Electronics: Fundamental Limits and Future Prospects

    13 Apr 2004 | Online Presentations | Contributor(s): Konstantin K. Likharev

    I will review some old and some recent work on the fundamental (and not so fundamental) limits imposed by physics of electron devices on their density and power consumption.


  19. Electronic Transport in Semi-conducting Carbon Nanotube Transistor Devices

    12 Apr 2004 | Online Presentations | Contributor(s): Joerg Appenzeller

    Recent demonstrations of high performance carbon nanotube field-effect transistors (CNFETs) highlight their potential for a future nanotube-based electronics. Besides being just a nanometer in...


  20. Nanoelectronic Scaling Tradeoffs: What does Physics Have to Say?

    12 Apr 2004 | Presentation Materials | Contributor(s): Victor Zhirnov

    Beyond CMOS, several completely new approaches to information-processing and data-storage technologies and architectures are emerging to address the timeframe beyond the current SIA International...