Tags: NCN Group - Physics

Description

Education group: Physics.

Physics

All Categories (1-9 of 9)

  1. Quantum Mechanics for Everyone

    03 Jun 2015 | | Contributor(s):: Erica W. Carlson

    Does an observer determine reality?  Can I use quantum mechanics to create my own reality?  Quantum mechanics takes us into the wild and wacky world of the really small where particles are waves, waves are particles, and the physical intuition we have from our everyday life...

  2. ECE 695A Reliability Physics of Nanotransistors

    17 Jan 2013 | | Contributor(s):: Muhammad Alam

    This course will focus on the physics of reliability of small semiconductor devices. In traditional courses on device physics, the students learn how to compute current through a device when a voltage is applied.

  3. MSE 405 Physics of Solids

    29 Jan 2011 | | Contributor(s):: Mark C. Hersam

    Introduction to quantum mechanics and solid state physics. Specific topics include free electron behavior, potential energy wells and barriers, energy band theory, phonons, and electrical properties of metals and semiconductors. This course develops many concepts of fundamental interest to...

  4. Physics for Future Presidents

    26 Jan 2011 | | Contributor(s):: Jerry M. Woodall

    The purpose and goals of this course are to provide a liberal arts style education in physics that could be important for you to understand if you were the president of the United States (or any other executive job). In other words, you will learn real, advanced physics without employing any...

  5. Colloquium on Graphene Physics and Devices

    22 Sep 2009 | | Contributor(s):: Joerg Appenzeller, Supriyo Datta, Mark Lundstrom

    This short course introduces students to graphene as a fascinating research topic as well as to develop their skill in problem solving using the tools and techniques of electronics from the bottom up.

  6. Nanostructured Electronic Devices: Percolation and Reliability

    17 Sep 2009 | | Contributor(s):: Muhammad A. Alam

    In this series of lectures introduces a simple theoretical framework for treating randomness and variability in emerging nanostructured electronic devices for wide ranging applications – all within an unified framework of spatial and temporal percolation. The problems considered involve...

  7. Percolation Theory

    03 Nov 2008 | | Contributor(s):: Muhammad A. Alam

    The electronic devices these days have become so small that the number of dopant atoms in the channel of a MOFET transistor, the number of oxide atoms in its gate dielectric, the number silicon- or metal crystals in nanocrystal Flash memory, the number of Nanowires in a flexible nanoNET...

  8. Physics of Nanoscale MOSFETs

    26 Aug 2008 | | Contributor(s):: Mark Lundstrom

    Transistor scaling has pushed channel lengths to the nanometer regime where traditional approaches to MOSFET device physics are less and less suitable This short course describes a way of understanding MOSFETs that is much more suitable than traditional approaches when the channel lengths are of...

  9. PHYS 342: Modern Physics

    Courses|' 25 Feb 2014

    PHYS 342 is a three-credit course for students who are required by their academic major to take a course in Modern Physics. The course provides an introduction to the physical principles underlying...

    https://nanohub.org/courses/phys342